10.1002/cssc.201701153
ChemSusChem
Similar to the epoxide reactions, it was assumed that 5c was then
activated by acetylide and went through intermediate C (C-O
cleavage and hydrogen transfer) to give 3a and 3g. It is clear that
pathway (III) is the fast and dominant reaction, while pathway (I)
and (II) coexist in the system as complimentary reaction paths.
[2] J. E. Holladay, J. F. White, J. J. Bozell and D. Johnson, Top Value-
Added Chemicals from Biomass - Volume II—Results of Screening for
Potential Candidates from Biorefinery Lignin, PNNL-16983, Pacific
Northwest National Laboratory, Richland, WA, 2007.
[3] R. D. Perlack, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J.
Stokes and D. C. Erbach, Biomass as Feedstock for a Bioenergy and
Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual
Supply, U.S. Dept. of Energy and U.S. Dept. of Agriculture, Oak Ridge
National Laboratory, Oak Ride, Tennessee, 2005, pp. 1–59.
[4] J. J. Bozell, Top. Curr. Chem., 2014, 353, 229.
[5] P.J. Deuss, K. Barta, Coord. Chem. Rev., 2016, 306, 510–532.
[6] a) J. S. Shabtai, US5959167 A 1999; b) J. E. Miller, L. Evans, A. E.
Littlewolf, D. E. Trudell, Fuel, 1999, 78, 1363; c) V. M. Robert, V.
Stein, T. Reiner, A. Lemonidou, X. Li, J. A. Lercher, Chem. Eur. J.
2011, 17, 5939; d) A. Toledano, L. Serrano, J. Labidi, Fuel, 2014, 116,
617; e) J. Long, Y. Xu, T. Wang, Z. Yuan, R. Shu, Q. Zhang, L. Ma,
Appl. Energy 2015, 141, 70; f) H. Konnerth, J. Zhang, D. Ma, M. H. G.
Prechtl, N. Yan, Chem. Eng. Sci. 2015, 123, 155.
[7] a) E. West, A. S. MacInnes, H. Hibbert, J. Am. Chem. Soc. 1943, 65,
1187; b) L. Mitchell, H. Hibbert, J. Am. Chem. Soc. 1944, 66, 602; c) K.
Lundquist, Appl. Polym. Symp. 1976, 28, 1393; d) T. Yokoyama, Y.
Matsumoto, J. Wood Chem. Technol. 2010, 30, 269; e) H. Ito, T. Imai, K.
Lundquist, T. Yokoyama, Y. Matsumoto, J. Wood Chem. Technol. 2011,
31, 172; f) W. Y. Xu, S. J. Miller, P. K. Agrawal, C. W. Jones,
ChemSusChem 2012, 5, 667; g) M. R. Sturgeon, S. Kim, K. Lawrence,
R. S. Paton, S. C. Comely, M. Nimlos, T. D. Foust, G. T. Beckham, ACS
Sustainable Chem. Eng., 2014, 2, 472; h) J. A. Onwudili, P. T. Williams,
Green Chem., 2014, 16, 4740; i) A. K. Deepa, P. L. Dhepe, RSC Adv.
2014, 4, 12625; j) T. Yokoyama, J. Wood Chem. Technol. 2015, 35, 27.
[8] a) J. W. Tucker, J. M. R. Narayanam, P. S. Shah, C. R. J. Stephenson,
Chem. Commun. 2001, 47, 5040; b) H. R. Bjørsvik, L. Liguori, Org.
Process Res. Dev. 2002, 6, 279; c) C. Crestini, P. Pro, V. Neri, R.
Saladino, Bioorg. Med. Chem. 2005, 13, 2569; d) C. Crestini, M. C.
Caponi, D. S. Argyropoulos, R. Saladino, Bioorg. Med. Chem. 2006, 14,
5292; e) R. Hage, A. Lienke, Angew. Chem. Int. Ed. 2006, 45, 206; f) S.
K. Hanson, R. T. Baker, J. C. Gordon, B. L. Scott, A. D. Sutton, D. L.
Thorn, J. Am. Chem. Soc. 2009, 131, 428; g) S. K. Hanson, R. T. Baker,
J. C. Gordon, B. L. Scott, D. L. Thorn, Inorg. Chem. 2010, 49, 5611; h)
S. Son, F. D. Toste, Angew. Chem. Int. Ed. 2010, 49, 3791; i) S. R.
Collinson, W. Thielemans, Coord. Chem. Rev. 2010, 254, 1854; j) B.
Sedai, C. Díaz-Urrutia, R. T. Baker, R. Wu, L. A. Silks, S. K. Hanson,
ACS Catal. 2011, 1, 794; k) G. Zhang, B. L. Scott, R. Wu, L. A. Silks, S.
K. Hanson, Inorg. Chem. 2012, 51, 7354; l)S. K. Hanson, R. Wu, L. A.
Silks, Angew. Chem. Int. Ed. 2012, 51, 3410; m) J. M. Hoover, J. E.
Stevens, S. S. Stahl, Nat. Protoc. 2012, 7, 1161; n) A. Rahimi, A.
Azarpira, H. Kim, J. Ralph, S. S. Stahl, J. Am. Chem. Soc. 2013, 135,
6415; o) J. M. W. Chan, S. Bauer, H. Sorek, S. Sreekumar, K. Wang, F.
D. Toste, ACS Catal. 2013, 3, 1369; p) P. C. A. Bruijnincx, B. M.
Weckhuysen, Nat. Chem. 2014, 6, 1035; q) B. Sedai, R. T. Baker, Adv.
Synth. Catal. 2014, 356, 3563; r) J. J. Bozell, A. Astner, D. Baker, B.
Biannic, D. Cedeno, T. Elder, O. Hosseinaei, L.Delbeck, J. W. Kim, C. J.
O’Lenick, T. Young, Bioenergy Res. 2014, 7, 856; s) Y. Gao, J. Zhang,
X. Chen, D. Ma, N. Yan, ChemPlusChem 2014, 79, 825; t) P. J. Deuss,
K. Barta, J. G. de Vries, Catal. Sci. Technol. 2014, 4, 1174; u) R. Ma, M.
Guo, X. Zhang, ChemSusChem 2014, 7, 412; v) A. Rahimi, A. Ulbrich, J.
J. Coon, S. S. Stahl, Nature 2014, 515, 249; w) C. S. Lancefield, O. S.
Ojo, F. Tran, N. J. Westwood, Angew. Chem. Int. Ed. 2015, 54, 258; x) F.
Tran, C. S. Lancefield, P. C. J. Kamer, T. Lebl, N. J. Westwood, Green
Chem. 2015, 17, 244; y) R. Zhu, B. Wang, M. Cui, J. Deng, X. Li, Y.
Ma and Y. Fu, Green Chem. 2016, 18, 2029.
Scheme 5. Proposed pathway for the cleavage and vinylation of
lignin model compound.
In summary, we have developed a mild and transition metal-free
protocol for the vinylation of epoxides and aryl-ether linkage (β-O-4
lignin model compound) via C-O bond cleavage, forming valuable
vinyl ether products. CaC2 plays a vital role in the C-O bond
activation and cleavage, and in providing acetylide source for the
formation of vinylated products. These thrilling results may provide
new methodology for organic synthesis and new insights towards
lignin or biomass-related degradation to useful products.
Experimental Section
General procedure for vinylation of epoxides: In a 8 mL pressure vial,
Cs2CO3 (0.5 mmol) and CaC2 (2.5 mmol) were added. The vial was then
purged and refilled with argon thrice before DMSO + 6 vol% H2O (5 mL)
and epoxide (1 mmol) were added to the vial using a syringe. The reaction
was stirred at 100 °C for 16 h, cooled to room temperature before it was
diluted with H2O (10 mL) and extracted with diethyl ether (3 x 10 mL). The
combined organic layer was dried over anhydrous Na2SO4 and concentrated
in vacuo. The residue was further purified by column chromatography on
silica gel to afford the corresponding vinyl ethers.
General procedure for vinylation of lignin model compounds: In a 8 mL
pressure vial, substrate (1 mmol), Cs2CO3 (0.5 mmol) and CaC2 (4.0 mmol)
were added. The vial was then purged and refilled with argon thrice before
DMSO + 9 vol% H2O (5 mL) was added to the vial using a syringe. The
reaction was stirred at 160 °C for 16 h, cooled to room temperature before it
was diluted with H2O (10 mL) and extracted with diethyl ether (3 x 10 mL).
The combined organic layer was dried over anhydrous Na2SO4 and
concentrated in vacuo. The residue was further purified by column
chromatography on silica gel to afford the corresponding vinyl ethers.
[9] a) V. Gevorgyan, J.-X. Liu, M. Rubin, S. Benson, Y. Yamamoto,
Tetrahedron Lett. 1999, 40, 8919; b) V. Gevorgyan, M. Rubin, S.
Benson, J.-X. Liu, Y. Yamamoto, J. Org. Chem. 2000, 65, 6179; c) S.
Kobayashi, M. Sugiura, H. Kitagawa, W. W.-L. Lam, Chem. Rev. 2005,
102, 2227; d) A. Dzudza, T. J. Marks, Org. Lett. 2009, 11, 1523; e) A.
Dzudza, T. J. Marks, Chem. Eur. J. 2010, 16, 3403; f) C. J. Weiss, T. J.
Marks, Dalton Trans. 2010, 39, 6576; g) S. Antoniotti, S. Poulain-
Martini, E. Du˜nach, Synlett 2010, 20, 2973; h) M. P. Mu˜noz, Org.
Biomol. Chem. 2012, 10, 3584; i) A. C. Atesin, N. A. Ray, P. C. Stair, T.
J. Marks, J. Am. Chem. Soc. 2012, 134, 14682; j) F.-F. Wang, C.-L. Liu,
W.-S. Dong, Green Chem. 2013, 15, 2091; k) R.-J. van Putten, J. C. Van
der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries,
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: C-O bond cleavage · β-O-4 linkage · calcium carbide ·
epoxide vinylation · lignin depolymerisation
[1] J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen,
Chem. Rev., 2010, 110, 3552.
3
This article is protected by copyright. All rights reserved.