C O M M U N I C A T I O N S
Table 2. Oxidative Coupling with Electron-Deficient Olefinsa
The catalysis also worked for other electron-deficient olefins.
An example is seen in the coupling of acrylonitrile 2i, affording
exclusively the linear olefins in good isolated yields (eq 3).
The reaction mechanism is yet to be fully studied. However, it
is clear that the solvent acetone is not a hydrogen acceptor in the
coupling of either electron-rich or deficient olefins on the basis of
1H NMR investigations.11 In the case of electron-deficient olefins,
it is the substrate that acts as the hydrogen acceptor. Thus, 1H NMR
monitoring of the coupling of 1a and 2f in acetone-d6 showed that
5a and methyl propionate were formed concomitantly in a molar
ratio of 2:1 during the entire reaction, and no hydrogen from the
-B(OH)2 group was incorporated into the propionate (eq 4).
However, in the case of the electron-rich olefins, for example, 2a,
reduction of the substrates was not detected with either NMR or
GC. The mechanism is under investigation in our lab.
entry
R
R
′
, R′′
product
yield (%)b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
H 1a
o-CH3 1b
o-Cl 1d
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
H, OCH3 2f
CH3, OCH3 2g
CH3, OCH3 2g
CH3, OCH3 2g
H, N(CH3)2 2h
H, N(CH3)2 2h
H, N(CH3)2 2h
5a
5b
5c
5d
5e
5f
5g
5h
5i
5j
5k
5l
5m
5n
5o
5p
5q
5r
82
94
81
80
85
94
93
95
86
96
94
80
78
83
82
75
79
80
o-F 1e
m-CH3 1f
m-Cl 1g
m-NO2 1h
p-CH3 1i
p-OCH3 1j
p-Cl 1l
p-Br 1m
1-naph 1sc
H 1a
p-OCH3 1j
p-Br 1m
H 1a
p-OCH3 1j
p-Br 1m
In conclusion, we have developed an efficient protocol for the
oxidative Heck coupling of arylboronic acids with both electron-
rich and -deficient olefins. The method requires neither oxygen nor
base to operate, broadening the scope of palladium-catalyzed
coupling reactions.
a All reactions were carried out with 1 (1.0 mmol), 2f-h (2.0 equiv),
Pd(OAc)2 (2 mol %), dppp (3 mol %), and TFA (30 mol %) in 3 mL acetone
at 70 °C for 20 h. b Isolated yields. c 1-Naphthylboronic acid.
The catalysis also worked for the electron-rich olefins 2d,e (eq
1). The products are again branched olefins. However, isomerization
of the CdC bond occurred, affording a mixture of olefins, probably
due to palladium or acid catalysis.10
Acknowledgment. We thank the DTI (JR), Zhongkai University
of Agriculture and Technology (XL), and the Department of
Chemistry of Liverpool University (JR) for financial support.
With the success in electron-rich olefins, we then turned attention
to a benchmark electron-deficient olefin methyl acrylate (2f).
Unfortunately, using the same conditions, the coupling of 1j with
2f afforded only ca. 20% yield of 5i. We then searched conditions
to promote the reaction and to our delight, acids were found to
significantly accelerate the reaction. In particular, 5i could be
obtained in over 60% isolated yield in the presence of 30 mol %
trifluoroacetic acid (TFA) under otherwise similar reaction condi-
tions (eq 2). The amount of the TFA had no significant effect on
the yield when more than 30 mol % was used. Other acids were
proven to be less effective, for example, acetic acid, benzoic acid,
triflic acid, and p-toluenesulfonic acid. The effects of other variables
echoed those found for 2a.
Supporting Information Available: Experimental details and
spectroscopy data (1H and 13C NMR). This material is available free
References
(1) Reviews: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005,
61, 11771. (b) Tsuji, J. Palladium Reagents and Catalysts; Wiley:
Chichester, U.K., 2004. (c) Larhed, M.; Hallberg, A. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.;
Wiley-Interscience: New York, 2002; Vol. 1, p 1133. (d) Beletskaya, I.
P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009.
(2) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083.
(3) Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85.
(4) Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A. Org. Lett. 2001, 3, 3313.
(5) (a) Crowley, J. D.; Ha¨nni, K. D.; Lee, A.-L.; Leigh, D. A. J. Am. Chem.
Soc. 2007, 129, 12092. (b) Lindh, J.; Enquist, P.-A.; Pilotti, Å.; Nilsson,
P.; Larhed, M. J. Org. Chem. 2007, 72, 7957. (c) Yoo, K. S.; Park, C. P.;
Yoon, C. H.; Sakaguchi, S.; O’Neill, J.; Jung, K. W. Org. Lett. 2007, 9,
3933. (d) Yoo, K. S.; Yoon, C. H.; Mishra, R. K.; Jung, Y. C.; Yi, S. W.;
Jung, K. W. J. Am. Chem. Soc. 2006, 128, 16384. (e) Enquist, P.-A.;
Lindh, J.; Nilsson, P.; Larhed, M. Green Chem. 2006, 8, 338. (f)
Farrington, E. J.; Barnard, C. F. J.; Rowsell, E.; Brown, J. M. AdV. Synth.
Catal. 2005, 347, 185. (g) Akiyama, K.; Wakabayashi, K.; Mikami, K.
AdV. Synth. Catal. 2005, 347, 1569. (h) Andappan, M. M. S.; Nilsson, P.;
Larhed, M. Chem. Commun. 2004, 218. (i) Andappan, M. M. S.; Nilsson,
P.; von Schenck, H.; Larhed, M. J. Org. Chem. 2004, 69, 5212. (j) Lautens,
M.; Mancuso, J.; Grover, H. Synthesis 2004, 2006. (k) Kabalka, G. W.;
Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685. (l)
Andappan, M. M. S.; Nilsson, P.; Larhed, M. Mol. DiVersity 2003, 7, 97.
(m) Jung, Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K. W. Org. Lett.
2003, 5, 2231.
Using the conditions established (eq 2), we then coupled a variety
of arylboronic acids with olefins 2f-h. As can be seen from Table
2, excellent yields were obtained for most of the substrates under
the catalysis with no addition of external oxidant, and in no cases
were cis or branched products detected. We again examined a
competition reaction by coupling 4-bromophenylboronic acid (1m)
with the olefins 2f-h, and found that only the oxidative products
were produced (entries 11, 15, and 18).
(6) (a) Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am.
Chem. Soc. 2006, 128, 6829. (b) Enquist, P.-A.; Nilsson, P.; Sjo¨berg, P.;
Larhed, M. J. Org. Chem. 2006, 71, 8779. (c) Stahl, S. S. Angew. Chem.,
Int. Ed. 2004, 43, 3400.
(7) Acetone as oxidant for oxidation of alcohols: Fujita, K.; Yamaguchi, R.
Synlett 2005, 560.
(8) Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751.
(9) Pd-phosphine catalyzed aerobic alcohol oxidation: Go´mez-Bengoa, E.;
Noheda, P.; Echavarren, A. M. Tetrahedron Lett. 1994, 35, 7097.
(10) Blatter, K.; Schlu¨ter A.-D. Synthesis 1989, 356.
(11) Acetone as hydrogen acceptor: Martinez, R.; Voica, F.; Genet, J.-P.;
Darses, S. Org. Lett. 2007, 9, 3213.
JA0782955
9
J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008 2425