Communications
[3] A. W. Williamson, J. Chem. Soc. 1852, 4, 229.
the bifunctional property of 6 to form 7. The signals for 7 were
[4] Pd: a) R. Akiyama, S. Kobayashi, J. Am. Chem. Soc. 2003, 125,
3412 – 3413; b) A. Yamamoto, Adv. Organomet. Chem. 1992, 34,
111 – 147; c) R. C. Larock, N. H. Lee, Tetrahedron Lett. 1991, 32,
6315 – 6318; d) R. Lakhmiri, P. Lhoste, D. Sinou, Tetrahedron
Lett. 1989, 30, 4669 – 4672; e) J. Muzart, J.-P. GenÞt, A. Denis, J.
Organomet. Chem. 1987, 326, C23 – C28; f) I. Minami, I.
Shimizu, J. Tsuji, J. Organomet. Chem. 1985, 296, 269 – 280;
g) F. Gꢁibe, Y. S. Mꢀleux, Tetrahedron Lett. 1981, 22, 3591 – 3594;
h) K. Takahashi, A. Miyake, G. Hata, Bull. Chem. Soc. Jpn. 1972,
45, 230 – 236; Ir: i) H. Nakagawa, T. Hirabayashi, S. Sakaguchi,
Y. Ishii, J. Org. Chem. 2004, 69, 3474 – 3477.
unaffected by the introduction of 10 mole amounts each of 1a
and 2 at reflux while the allylation proceeded.[14] This
indicates that the p-allyl species 7 is at the resting state in
the catalysis. Complex 7 [R = 5,6-(CH)4] was isolated as a
single pale yellow crystal. The characteristic feature of the
endo p-allyl conformation at a small value of f is also seen in
the X-ray crystallographic measurements (Figure 1). The
[5] For a recent example of Pd-catalyzed allylation of metal
alkoxides with allyl esters, see: H. Kim, C. Lee, Org. Lett.
2002, 4, 4369 – 4371.
[6] a) J. Qꢁ, Y. Ishimura, N. Nagato, Nippon Kagaku Kaishi 1996, 9,
787 – 791; b) Y. Ishimura, J. Qꢁ, Jpn. Kokai Tokkyo Koho Jpn.
Pat. 05306246, 1993.
[7] Pd: Y. Kayaki, T. Koda, T. Ikariya, J. Org. Chem. 2004, 69, 2595 –
2597; Ru: R. C. van der Drift, M. Vailati, E. Bouwman, E. Drent,
J. Mol. Catal. A 2000, 159, 163 – 177; Ni: H. Bricout, J.-F.
Carpentier, A. Mortreux, J. Mol. Catal. A 1998, 136, 243 – 251.
[8] For acid-catalyzed direct allylation, see: a) E. Moffett, J. Am.
Chem. Soc. 1934, 56, 2009; b) M. J.-B. Senderens, Compt. Rend.
1925, 181, 698 – 701; for oxymetalation–dehydroxymetalation
using Cu, Pd, and Hg, see: c) W. Oguchi, H. Uchida, WO Patent
03/106024, 2003; d) C. M. Dumlao, J. W. Francis, P. M. Henry,
Organometallics 1991, 10, 1400 – 1405; e) W. H. Watanabe, L. E.
Conlon, J. C. H. Hwa, J. Org. Chem. 1958, 23, 1666 – 1668.
[9] T. P. Gill, K. R. Mann, Organometallics 1982, 1, 485 – 488; for a
recent efficient synthesis, see: E. P. Kꢁndig, F. R. Monnier, Adv.
Synth. Catal. 2004, 346, 901 – 904.
Figure 1. Molecular structure of [CpRu(p-C3H5)(2-quinolinecarboxyl-
ato)]PF6 [7; R=5,6-(CH)4] determined by X-ray crystallographic
analysis.[15]
[10] G. Uray, N. M. Maier, W. Lindner, J. Chromatogr. A 1994, 666,
41 – 53.
isolated RuIV complex acted as the allylation catalyst with
higher reactivity than that of the corresponding 2-pyridine-
carboxylic acid complex. The rate-determining reductive
elimination of RuIV to a RuII center could be accelerated by
a quinoline ring, which has a higher p-accepting ability than
pyridine.
In conclusion, we have developed an efficient catalytic
system for the dehydrative allylation of alcohols. The new
methodology is superior to conventional synthetic routes[3–8]
in many respects, and it increases the importance of allyl
ethers not only as basic compounds but also as protecting
groups in organic synthesis. Furthermore, a series of NMR
spectroscopic and X-ray crystallographic studies on a key p-
allyl intermediate has given insight into the probable reaction
mechanism.
[11] a) R. L. Pederson, K. K.-C. Liu, J. F. Rutan, L. Chen, C.-H.
Wong, J. Org. Chem. 1990, 55, 4897 – 4901; b) A. B. Mikkilineni,
P. Kumar, E. Abushanab, J. Org. Chem. 1988, 53, 6005 – 6009.
[12] About 10% of unassignable signals were also observed, see
Supporting Information for details.
[13] a) E. Rꢁba, W. Simanko, K. Mauthner, K. M. Soldouzi, C.
Slugovc, K. Mereiter, R. Schmid, K. Kirchner, Organometallics
1999, 18, 3843 – 3850; b) T. Kondo, H. Ono, N. Satake, T.
Mitsudo, Y. Watanabe, Organometallics 1995, 14, 1945 – 1953;
c) H. Nagashima, K. Mukai, Y. Shiota, K. Yamaguchi, K. Ara, T.
Fukahori, H. Suzuki, M. Akita, Y. Moro-oka, K. Itoh, Organo-
metallics 1990, 9, 799 – 807.
[14] The ratio of 3a, 2, and diallyl ether after 30 minutes was
approximately 40:20:20.
[15] Crystallographic analysis of 7 (R = 5,6-(CH)4) pale yellow prism;
¯
P1, a = 7.94(6), b = 8.3(1), c = 14.3(1) ꢂ, a = 106.2(5)8,
b
= 89.95(2)8, g = 90.0(3)8, V= 906.7(19) ꢂ3, Z = 2, R = 0.136,
Rw = 0.163. CCDC 251818 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
Received: November 4, 2004
Published online: February 3, 2005
Keywords: allyl ethers · allylation · homogeneous catalysis ·
.
quinolinecarboxylic acid · ruthenium
[1] a) J. Tsuji in Handbook of Organopalladium Chemistry for
Organic Synthesis, Vol. 5 (Ed.: E. Negishi), Wiley, New York,
2002, pp. 1669 – 1687; b) B. M. Trost, D. L. VanVranken, Chem.
Rev. 1996, 96, 395 – 422; c) S. A. Godleski in Comprehensive
Organic Synthesis, Vol. 4 (Eds.: B. M. Trost, I. Fleming),
Pergamon, Oxford, 1991, pp. 585 – 661.
[2] S. Tanaka, H. Saburi, Y. Ishibashi, M. Kitamura, Org. Lett. 2004,
6, 1873 – 1875, and references therein.
1732
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1730 –1732