C O M M U N I C A T I O N S
Table 1. Chirality Exchange Benzannulation of AACM 1a and 1a′
Acknowledgment. We are grateful to Dr. Kazunori Yanagi and
Mr. Suguru Umeki for X-ray crystallographic analysis. This research
was partially supported by Grant-in-Aids for Scientific Research
on Priority Areas (A) “Exploitation of Multi-Element Cyclic
Molecules” and for the 21st Century COE Program from the
Ministry of Education, Culture, Sports, Science and Technology
of Japan.
yield
(%)c
ratiod
(2a:3a)
ee of 2a
Supporting Information Available: Experimental details, analyti-
cal and crystallographic data and characterization for reactions in Tables
1 and 2 (PDF). X-ray crystallographic files in CIF format. This material
entry
substratea
Lewis acidb
TiCl4
TiCl4
SnCl4
T (°C)
(%)e
1
2
3
4
5
6
7
1a
1a
1a
1a′
1a′
1a′
1a′
0
-78
-78
-78
0
0
-78
75
96
72
89
41
54
trace
(74:26)
(>99:1)
(>99:1)
(>1:99)
(97:3)
(77:23)
-
97
>99
>99
-
45
55
TiCl4
References
TBDMSOTf
TMSOTf
TBDMSOTf
(1) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New
York, 1994. (b) Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed.; John
Wiley and Sons: New York, 2000.
-
(2) (a) Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61,
1375. (b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051.
(c) Lipshutz, B. H.; Kayser, F.; Liu, Z.-P. Angew. Chem., Int. Ed. Engl.
1994, 33, 1842. (d) Rawal, V. H.; Florjancic, A. S.; Singh, S. P.
Tetrahedron Lett. 1994, 35, 8985. (e) Sugimura, T.; Yamada, H.; Inoue,
S.; Tai, A. Tetrahedron: Asymmetry 1997, 8, 649. (f) Lin, G.-Q.; Zhong,
M. Tetrahedron: Asymmetry 1997, 8, 1369. (g) Bringmann, G.; Keller,
P. A.; Rolfing, K. Synlett 1994, 123. (h) Gant, T. G.; Meyers, A. I.
Tetrahedron 1994, 50, 2297. (i) Miyano, S.; Fukushima, H.; Handa, S.;
Ito, H.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1988, 61, 3249. (j) Feldman,
K. S.; Smith, R. S. J. Org. Chem. 1996, 61, 2606. (k) Stanforth, S. P.
Tetrahedron 1998, 54, 263. (l) Wilson, J. M.; Cram, D. J. J. Am. Chem.
Soc. 1982, 104, 881. (m) Wilson, J. M.; Cram, D. J. J. Org. Chem. 1984,
49, 4930. (n) Bringmann, G.; Hartung, T. Angew. Chem., Int. Ed. Engl.
1992, 31, 761. For a recent review of synthesis of axially chiral biaryl
compounds and natural product, see: (o) Bringmann, G.; Breuning, M.;
Tasler, S. Synthesis 1999, 525. (p) Bringmann, G.; Walter, R.; Weirich,
R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977.
a Optical purities: >99% ee. b 1.0 equiv of Lewis acid was used.
c Isolated yields. d Determined by 1H NMR. e Determined by HPLC with a
Chiralcel OD column.
Table 2. Chirality Exchange Benzannulation of AACMs 1b-f
a
Using TiCl4
1
2
entry
substrateb
R
R
product
yield (%)c
ee (%)d
(3) (a) Ohmori, K.; Kitamura, M.; Suzuki, K. Angew. Chem., Int. Ed. 1999,
38, 1226. (b) Kitamura, M.; Ohmori, K.; Suzuki, K. Angew. Chem., Int.
Ed. 1999, 38, 1229. (c) Taniguchi, N.; Hata, T.; Uemura, M. Angew.
Chem., Int. Ed. 1999, 38, 1232. (d) Curran, D. P.; Liu, W.; Chen, C. H.
J. Am. Chem. Soc. 1999, 121, 11012.
1
2
3
4
5
1b
1c
1d
1e
1f
Cl
Cl
MeO
MeO
Me
H
Cl
Me
Cl
Cl
2b
2c
2d
2e
2f
97
70
71
65
47
>99
>99
>99
>99
>99
(4) Recently, Wulff reported the chirality transfer benzannulation from sp3
center to chiral axes utilizing Fisher carbene complexes with moderate to
excellent selectivity. Because this benzannulation deals with racemic
substrates, optically inactive atropdiastereomers are inevitably obtained:
Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc. 2002,
124, 6512.
a 1.0 equiv of TiCl4 was used. b Optical purity of each AACM was >99%
ee. c Isolated yields. d Determined by HPLC with a Chiralcel OD column.
(5) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002,
124, 773.
(6) (a) Nishii, Y.; Fujiwara, A.; Wakasugi, K.; Miki, M.; Yanagi, K.; Tanabe,
Y. Chem. Lett. 2002, 30. (b) Nishii, Y.; Wakasugi, K.; Tanabe, Y. Synlett
1998, 67. (c) Nishii, Y.; Tanabe, Y. J. Chem. Soc., Perkin Trans. 1 1997,
477. (d) Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38,
7195-7198. (e) Tanabe, Y.; Wakimura, K.; Nishii Y. Tetrahedron Lett.
1996, 37, 1837. (f) Nishii, Y.; Wakimura, K.; Tsuchiya, T.; Nakamura,
S.; Tnabe, Y. J. Chem. Soc., Perkin Trans. 1 1996, 1243. For a recent
review of syntheses of gem-dihalocyclopropanes and their use in organic
synthesis, see: (g) Fedorynski, M. Chem. ReV. 2003, 103, 1099.
(7) (a) Fuji, K.; Kawabata. T.; Yahiro, K. J. Am. Chem. Soc. 1991, 113, 9694.
(b) Fuji, K.; Kawabata, T. Chem. Eur. J. 1998, 4, 373.
Scheme 1
(8) The absolute configuration of 1a was deduced as follows. The stereogenic
center of the cyclopropane moiety was determined as (S) using a derivative,
N-(1S)-1-phenylethyldichlorocyclopropylcarboxamide. That of the tertiary
carbon-bearing OH group was determined as (S) using AACM 1a. The
absolute configuration of 2a was determined as (M) using a derivative,
(-)-(P)-2-bromomethyl-1-(2-bromomethylphenyl)-4-chloronaphthalene.
(The reverse stereodescriptor (P) is a consequence of the sequence rule
of the CIP nomenclature.)
(9) Both the σ-orbital of the cyclopropyl group and the π-orbital of the o-R2-
aryl group can stabilize the π-orbital of the adjacent carbocation with a
maximum overlap, in which the bisected conformation of the cyclopro-
pylmethyl cation is the most stable system. For discussion of cyclopro-
pylmethyl cation, see: Smith, M. B.; March, J. March’s AdVanced Organic
Chemistry, 5th ed.; Wiley-Interscience: New York, 2001; pp 222-223,
p 416-418.
In summary, we achieved the first chirality exchange benzan-
nulation from sp3 central chirality to axial chirality using optically
active o-R1-substituted AACMs 1 and obtained axially chiral
R-arylnaphthalenes 2 with excellent enantioselectivity. The present
method is a new avenue for the synthesis of axially chiral biaryls.
JA0319442
9
J. AM. CHEM. SOC. VOL. 126, NO. 17, 2004 5359