S. Matsumoto, S. Tamaru, K. Kaneko, M. Ikeda and I. Hamachi,
J. Am. Chem. Soc., 2009, 131, 5580.
3 M. George and R. G. Weiss, Acc. Chem. Res., 2006, 39, 489;
P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133; J. H. van
Esch and B. L. Feringa, Angew. Chem., Int. Ed., 2000, 39, 2263;
Y. A. Gao, F. Zhao, Q. C. Wang and Y. Zhang, Chem. Soc. Rev.,
2010, 39, 3425.
4 F. Rodriguez-Llansola, J. F. Miravet and B. Escuder, Chem.–Eur.
J., 2010, 16, 8480; F. Rodriguez-Llansola, B. Escuder and
J. F. Miravet, J. Am. Chem. Soc., 2009, 131, 11478; A. Dawn,
N. Fujita, S. Haraguchi, K. Sada and S. Shinkai, Chem. Commun.,
2009, 2100; M. O. Guler and S. I. Stupp, J. Am. Chem. Soc., 2007,
129, 12082.
Fig. 4 Hierarchical self-assembly of 1 to gel.
5 J. H. Bang and K. S. Suslick, Adv. Mater., 2010, 22, 1039;
G. Cravotto and P. Cintas, Chem. Soc. Rev., 2009, 38, 2684;
D. Bardelang, Soft Matter, 2009, 5, 1969; A. R. Hirst,
I. A. Coates, T. R. Boucheteau, J. F. Miravet, B. Escuder,
V. Castelletto, I. W. Hamley and D. K. Smith, J. Am. Chem.
Soc., 2008, 130, 9113.
6 J. Emsley, Chem. Soc. Rev., 1980, 9, 91; C. Laurence and
M. Berthelot, Perspect. Drug Discovery Des., 2000, 18, 39.
7 Y. He, Z. Bian, C. Kang, R. Jin and L. Gao, New J. Chem., 2009,
33, 2073.
8 Y. He, Z. Bian, C. Kang and L. Gao, Chem. Commun., 2011,
47, 1589; Y. He, Z. Bian, C. Kang and L. Gao, Chem. Commun.,
2010, 46, 5695; Y. He, Z. Bian, C. Kang, Y. Cheng and L. Gao,
Chem. Commun., 2010, 46, 3532.
9 S. Aubry, S. Pellet-Rostaing, R. Faure and M. Lemaire,
J. Heterocycl. Chem., 2006, 43, 139. See section S2 of ESIw for
details.
10 These compounds are confirmed by NMR and MALDI-TOF MS
spectra. The MS show an exceptional [M À H]+ plus usual [M +
H]+, the former resulting from dehydrogenation under laser
irradiation (Table S1 and Fig. S1–4, ESIw): X. Lou,
A. J. H. Spiering, B. F. M. De Waal, J. L. J. Van Dongen,
J. A. J. M. Vekemans and E. W. Meijer, J. Mass Spectrom.,
2008, 43, 1110.
11 R. Yamaguchi, T. Hamasaki, T. Sasaki, T. Ohta, K. Utimoto,
S. Kozima and H. Takaya, J. Org. Chem., 1993, 58, 1136;
Y. Haraguchi, S. Kozima and R. Yamaguchi, Tetrahedron:
Asymmetry, 1996, 7, 443.
Thus, the hierarchical self-assembly of 1 from liquid
gelation is postulated as shown in Fig. 4. The molecule 1
assembles through H-bonding between hydroxy and amine to
1D linear aggregates and subsequently to a 2D bilayer
structure. The stacking of bilayers affords a lamellar structure
that grows and expands as entangled fibrous or flaky networks
to immobilize fluids as a gel. The cis-phenyl on 1 is supposed
to be advantageous for 1D aggregation in long range but
disadvantageous for 2D or 3D assembly in wide area.
However, the trans-phenyl on 2 may prevent the self-assembly
in a pattern of one dimension predominating over the other
dimensions, while compound 3, without phenyl substitution
retains high solvophilicity. The difference in gelation capability
among 1, 2 and 3 suggests that the cis-configuration of
substituents on the 1,2,3,4-tetrahydroisoquinoline scaffold is
a key factor for gelation over solution or crystallization.
Hence, the H-bonding between hydroxy and amine, associated
with stereochemistry influence, controls the pattern of
self-assembly of 1 to solvent gelation.
In summary, we have discovered a new organogelator 1 with
a unique structural feature of cyclic b-aminoalcohol, which is
able to form reversible gels in usual polar and apolar solvents
through H-bonding between hydroxy and amine. Toluene gel
is selectively responsive to transition metal ions such as Ag(I),
Cu(II) and Fe(III). The hierarchical self-assembly of 1 to a gel is
proposed according to FTIR and XRD analyses as well as from
X-ray single crystal analysis of analogue compound 4. Compound
1 is the first example of aminoalcohol organogelator with
gelation driven by H-bonding between hydroxy and amine.17
The discovery expands the scope and diversity of structures
and interactions for the design of new gelators. Further work
will focus on the extension of the structural scope of the
gelator scaffold, and application of the gel system as soft
materials, are in progress.
12 W. Cai, G. T. Wang, P. Du, R. X. Wang, X. K. Jiang and
Z. T. Li, J. Am. Chem. Soc., 2008, 130, 13450.
13 M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed,
Chem. Commun., 2008, 2644; A. R. Hirst, D. K. Smith,
M. C. Feiters and H. P. M. Geurts, Chem.–Eur. J., 2004,
10, 5901; T. Shimizu and M. Masuda, J. Am. Chem. Soc., 1997,
119, 2812.
14 J. E. Sohna and F. Fages, Chem. Commun., 1997, 327;
N. Amanokura, Y. Kanekiyo, S. Shinkai and D. N. Reinhoudt,
J. Chem. Soc., Perkin Trans. 2, 1999, 1995; A. Kishimura,
T. Yamashita and T. Aida, J. Am. Chem. Soc., 2005, 127, 179.
15 K. D. M. Harris, M. Tremayne and B. M. Kariuki, Angew. Chem.,
Int. Ed., 2001, 40, 1626.
16 Crystal data for 4: C10H13NO, M = 163.21, monoclinic, space
group P21, a = 9.6435(14), b = 6.500(1), c = 14.390(2) A, , b =
106.698(2)1, V = 864.0(2) A3, T = 295(2) K, Z = 4, 4797
reflections measured, 1863 independent reflections (Rint
=
0.0295). The final R1 values were 0.0321 (I 4 2s(I)). The final
wR(F2) values were 0.0793 (I 4 2s(I)). The final R1 values were
0.0362 (all data). The final wR(F2) values were 0.0820 (all data).
The goodness of fit on F2 was 1.052.
Notes and references
1 N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821;
X. Y. Liu, Top. Curr. Chem., 2005, 256, 1.
2 C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang,
R. Zhao and D. Zhu, J. Am. Chem. Soc., 2010, 132, 3092; E. Krieg,
E. Shirman, H. Weissman, E. Shimoni, S. G. Wolf, I. Pinkas and
B. Rybtchinski, J. Am. Chem. Soc., 2009, 131, 14365; H. Komatsu,
17 So-called aminoalcohol organogelators in other reports are, in fact,
the corresponding amide derivatives based upon interactions
between amido, but not aminoalcohol themselves. See review:
´
L. Frkanec and M. Zinic, Chem. Commun., 2010, 46, 522.
c
10748 Chem. Commun., 2011, 47, 10746–10748
This journal is The Royal Society of Chemistry 2011