A R T I C L E S
Waser et al.
Scheme 1. Hydration, Hydrohydrazination, and Hydroazidation of
Olefins
two catalyst classes have proven efficient in the hydroamination
reaction: lanthanide and early metal-based catalysts are typically
used for intramolecular hydroaminations,12 whereas for late
transition metals, the preferred substrates are Michael accep-
tors,13 olefins activated via conjugation (vinylarenes and dienes)
or ring-strain (norbornene) for intermolecular hydroaminations.14
Despite encouraging recent progress,15 the search for a truly
general method for the hydroamination of olefins is still ongoing.
To avoid the difficulties inherent to the hydroamination
approach, more active electrophilic amination reagents had been
devised, which allow the functionalization of simple carbon
nucleophiles under mild conditions.16 Among these reagents,
nitroso compounds,17 azides,18 and especially azodicarboxy-
lates16,19 have emerged as useful nitrogen sources. However,
with the exception of Diels-Alder20a-d and ene reactions,20e-g
such reagents cannot be used for the direct functionalization of
nonnucleophilic C-C double bonds.
However, there are no really general methods for the direct
addition of an O-H bond onto a C-C double bond.21 In 1989,
Mukaiyama and Isayama developed a new concept for the
hydration of olefins: instead of activating a single O-H bond
for addition, they decided to use simultaneously a hydride source
and an oxygen source.22 This stepwise approach allows the use
of much more reactive reagents, with the hope of overriding
the kinetic barrier to the functionalization of nonactivated
alkenes. However, this gain goes together with formidable
challenges for the development of an efficient process. Three
undesired pathways must be taken into account: overoxidation
to ketone, over-reduction to the alkane, and direct reaction of
the oxidant with the reductant. With the choice of silanes or
alcohols as reductants, molecular oxygen as oxidant, and Co or
Mn as catalyst, Mukaiyama and Isayama were able to manage
these difficulties (Scheme 1A).
The hydration of olefins21 is the oxygen analogue of the
hydroamination reaction and could as such serve as a source of
inspiration for the development of new hydroamination methods.
(12) (a) Gagne´, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108. For a
review, see: (b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
(13) (a) Kawatsura, M.; Hartwig, J. F. Organometallics 2001, 20, 1960. (b)
Zhuang, W.; Hazell, R. G.; Jorgensen, K. A. Chem. Commun. 2001, 1240.
(c) Fadini, L.; Togni, A. Chem. Commun. 2003, 30. (d) Fadini, L.; Togni,
A. Chimia 2004, 58, 208.
(14) For a review, see: (a) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507. For
styrene hydroamination with late metal, see: (b) Kawatsura, M.; Hartwig,
J. F. J. Am. Chem. Soc. 2000, 122, 9546. (c) Nettekoven, U.; Hartwig, J.
F. J. Am. Chem. Soc. 2002, 124, 1166. (d) Utsunomiya, M.; Hartwig, J. F.
J. Am. Chem. Soc. 2003, 125, 14286. (e) Utsunomiya, M.; Kuwano, R.;
Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 5608. (f)
Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702. (g)
Takaya, J.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5756. (h) Johns,
A. M.; Utsunomiya, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 1828. (i) Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C.
G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. Synlett 2002, 1579.
For diene hydroamination, see: (j) Lober, O.; Kawatsura, M.; Hartwig, J.
F. J. Am. Chem. Soc. 2001, 123, 4366. (k) Pawlas, J.; Nakao, Y.; Kawatsura,
M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669. (l) Qin, H.;
Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128,
1611. For nobornene hydroamination, see: (m) Casalnuovo, A. L.;
Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. (n) Dorta,
R.; Egli, P.; Zurcher, F.; Togni, A. J. Am. Chem. Soc. 1997, 119, 10857.
(15) (a) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127,
2042. (b) Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635. (c) Bender,
C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070. (d) Karshtedt,
D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640. (e)
Zulys, A.; Dochnahl, M.; Hollmann, D.; Lo¨hnwitz, K.; Herrmann, J. S.;
Roesky, P. W.; Blechert, S. Angew. Chem., Int. Ed. 2005, 44, 7794. (f)
Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888. (g) Zhang,
J. L.; Yang, C. G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798. (h) Michael,
F. E.; Cochran, B. M. J. Am. Chem. Soc. 2006, 128, 4246.
Upon examination of Mukaiyama’s work, a question arises:
would it be possible to combine the metal-mediated activation
of otherwise nonactivated olefins with an electrophilic/oxidizing
nitrogen source, while avoiding direct reduction of the nitrogen-
transfer reagent?23 Indeed, we have developed such an approach
both successful with azodicarboxylates and sulfonyl azides as
nitrogen sources, allowing the development of the hydrohy-
drazination24 (Scheme 1B) and hydroazidation25 (Scheme 1C)
of olefins. Herein, we provide a full account of our work,
including effect of catalyst structure, reaction conditions, process
optimization, and expanded scope. Furthermore, investigations
on the reaction mechanism are described.
(16) For a general review on amination, see: (a) Ricci, A. Modern Amination
Methods; Wiley-VCH: Weinheim, Germany, 2000. For reviews on
electrophilic amination, see: (b) Erdik, E.; Ay, M. Chem. ReV. 1989, 89,
1947. (c) Greck, C.; Genet, J. P. Synlett 1997, 741. (d) Dembech, P.; Seconi,
G.; Ricci, A. Chem.sEur. J. 2000, 6, 1281. (e) Erdik, E. Tetrahedron 2004,
60, 8747. (f) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem.
2004, 1377. (e) Janey, J. M. Angew. Chem., Int. Ed. 2005, 44, 4292.
(17) (a) Oppolzer, W.; Tamura, O.; Sundarababu, G.; Signer, M. J. Am. Chem.
Soc. 1992, 114, 5900. (b) Yamamoto, H.; Momiyama, N. Chem. Commun.
2005, 3514.
Results and Discussion
Co-Catalyzed Hydrohydrazination Reaction. Alkyl hydra-
zines are useful precursors to amines in the assembly of synthetic
building blocks and have been broadly used for the elaboration
of heterocycles omnipresent in pharmaceuticals.26 The substitu-
(18) (a) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem.
Soc. 1990, 112, 4011. (b) Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2000,
122, 6496. (c) Panchaud, P.; Chabaud, L.; Landais, Y.; Ollivier, C.; Renaud,
P.; Zigmantas, S. Chem.sEur. J. 2004, 10, 3606.
(19) (a) Duthaler, R. O. Angew. Chem., Int. Ed. 2003, 42, 975. For recent
applications, see: (b) Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem.
Soc. 2004, 126, 8120. (c) Liu, X. F.; Li, H. M.; Deng, L. Org. Lett. 2005,
7, 167. (d) Poulsen, T. B.; Alemparte, C.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 11614.
(22) (a) Mukaiyama, T.; Isayama, S.; Inoki, S.; Kato, K.; Yamada, T.; Takai,
T. Chem. Lett. 1989, 449. (b) Inoki, S.; Kato, K.; Takai, T.; Isayama, S.;
Yamada, T.; Mukaiyama, T. Chem. Lett. 1989, 515. (c) Kato, K.; Yamada,
T.; Takai, T.; Inoki, S.; Isayama, S. Bull. Chem. Soc. Jpn. 1990, 63, 179.
(d) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 1071. (e) Isayama, S.;
Mukaiyama, T. Chem. Lett. 1989, 569. (f) Isayama, S.; Mukaiyama, T.
Chem. Lett. 1989, 573. (g) Isayama, S. Bull. Chem. Soc. Jpn. 1990, 63,
1305.
(20) (a) Yamamoto, Y.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 4128. (b)
Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004,
126, 5962. (c) Yamamoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2005,
44, 7082. (d) Chow, C. P.; Shea, K. J. J. Am. Chem. Soc. 2005, 127, 3678.
(e) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5261. (f)
Baran, P. S.; Guerrero, C. A.; Corey, E. J. Org. Lett. 2003, 5, 1999. (g)
Srivastava, R. S.; Nicholas, K. M. J. Am. Chem. Soc. 1997, 119, 3302.
(21) Tani, K.; Kataoka, Y. In Catalytic Heterofunctionalization; Togni, A.,
Gru¨tzmacher, H., Eds.; Wiley-VCH: New York, 2001; p 171.
(23) The oxidative amination of R,â-unsaturated carbonyl compounds with
nitrites has been reported by Mukaiyama: (a) Kato, K.; Mukaiyama, T.
Chem. Lett. 1990, 1395. (b) Kato, K.; Mukaiyama, T. Chem. Lett. 1990,
1917. (c) Kato, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1991, 64, 2948.
(24) (a) Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676. (b) Waser,
J.; Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 4099. (c) Waser, J.;
Gonza´lez-Go´mez, J. C.; Nambu, H.; Huber, P.; Carreira, E. M. Org. Lett.
2005, 7, 4249.
(25) Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 8294.
9
11694 J. AM. CHEM. SOC. VOL. 128, NO. 35, 2006