L. Liu et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2221–2226
2225
€
8. Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306.
to standard acetylation conditions (Ac2O/pyridine) prior
to chromatography.
9. Lockhoff, O. Angew. Chem., Int. Ed. 1998, 37, 3436.
10. Lockhoff, O.; Frappa, I. Comb. Chem. High Throughput
Screen. 2002, 5, 361.
11. Sutherlin, D. P.; Stark, T. M.; Hughes, R.; Armstrong,
R. W. J. Org. Chem. 1996, 61, 8350.
12. Park, W. K. C.; Auer, M.; Jaksche, H.; Wong, C.-H.
J. Am. Chem. Soc. 1996, 118, 10150.
13. Bradley, H.; Fitzpatrick, G.; Glass, W. K.; Kunz, H.;
Murphy, P. V. Org. Lett. 2001, 3, 2629.
14. Murphy, P. V.; Bradley, H.; Tosin, M.; Pitt, N.; Fitz-
patrick, G. M.; Glass, W. K. J. Org. Chem. 2003, 68, 5692.
15. Mulloy, B.; Linhardt, R. J. Curr. Opin. Struct. Biol. 2001,
11, 623.
16. Pellegrini, L. Curr. Opin. Struct. Biol. 2001, 11, 629.
17. Faham, S.; Linhardt, R. J.; Rees, D. C. Curr. Opin. Struct.
Biol. 1998, 8, 578.
36. General procedure for sulfonation: The polyol was dis-
solved in anhydrous DMF (0.04 M) and sulfur trioxide
pyridine complex (2 equiv per hydroxyl group) or sulfur
trioxide trimethylamine complex (3equiv per hydroxyl
group) was added. The mixture was stirred overnight at
60 °C under an atmosphere of nitrogen, cooled to 0 °C and
basified by the addition of 3M NaOH solution until the
pHꢀ9. The mixture was evaporated to dryness in vacuo
and the residue was purified by size-exclusion chromato-
graphy on Bio-Gel P-2 or LH-20, eluting with 0.1 M
NH4HCO3 or water, respectively. The pure product
fractions identified by capillary electrophoresis39 were
pooled, lyophilized, passed through an ion exchange
column (AG 50W-X8, Naþ form, 1 · 18 cm, eluting with
deionized water) and lyophilized again to provide the
sulfated product as the sodium salt.
18. Faham, S.; Hileman, R. E.; Fromm, J. R.; Linhardt, R. J.;
Rees, D. C. Science 1996, 271, 1116.
37. The purity of sulfated products (P96%) was determined
by capillary electrophoresis.39 All compounds gave satis-
factory NMR and MS data. The NMR spectra were
complex due to the presence of rotamers formed by
restricted rotation about the amide bonds but could be
simplified in some cases by the use of high temperature
(some coalescence was observed) and assigned with the aid
of gCOSY and gHSQC experiments. Representative data:
13: 1H NMR (D2O, 400 MHz, 25 °C, internal ref.: acetone,
d 2.05): two rotamers in a molar ratio of 56:44. Major
rotamer: d 7.36–7.11 (m, 5H, Ph), 5.95 (d, J1;2 ¼ 3:4 Hz,
H1), 4.89 (d, J4;5 ¼ 9:6 Hz, H5), 4.75, 4.69 (AB,
JA;B ¼ 16 Hz, a-CH2), 4.50 (dd, J2;3 ¼ J3;4 ¼ 9:6 Hz, H3),
4.31 (dd, H2), 4.00 (dd, H4), 3.87 (s, b-CH2), 3.42–3.32 (m,
1H, cyclohexyl CH), 1.64–1.36, 1.20–0.92 (2m, 5H each,
cyclohexyl CH2); minor rotamer: d 7.36–7.11 (m, 5H, Ph),
5.90 (d, J1;2 ¼ 3:2 Hz, H1), 4.58 (d, J4;5 ¼ 9:8 Hz, H5), 4.52
(s, 2H, c-CH2), 4.48 (dd, J2;3 ¼ 10, J3;4 ¼ 9:4 Hz, H3), 4.32,
3.90 (AB, JA;B ¼ 17:6 Hz, d-CH2), 4.28 (dd, H2), 4.04 (dd,
H4), 3.42–3.32 (m, 1H, cyclohexyl CH), 1.64–1.36, 1.20–
0.92 (2m, 5H each, cyclohexyl CH2); 13C NMR (D2O,
100 MHz, internal ref.: acetone, d 30.37): doubling-up of
signals due to two rotamers: d 170.0, 169.8, 168.9, 168.8
(2 · C ¼ O), 135.4, 135.2, 129.2, 129.2, 128.5, 128.3, 128.2,
128.1 (Ph), 95.6(7), 95.6(5) (C1), 77.8, 77.7 (C3), 73.8, 73.7
(C2), 70.7, 70.2 (C4), 69.2, 68.7 (C5), 52.9 (a-CH2), 51.1
(c-CH2), 50.3(d-CH 2), 50.0 (b-CH2), 49.2, 49.0 (cyclo-
hexyl CH), 31.8(9), 31.8(6), 25.1, 25.0, 24.5, 24.4 (cyclo-
hexyl CH2); HRMS: m=z calcd for C21H28N2Na3O16S3:
19. DiGabriele, A. D.; Lax, I.; Chen, D. I.; Svahn, C. M.;
Jaye, M.; Schlessinger, J.; Hendrickson, W. A. Nature
1998, 393, 812.
20. Pellegrini, L.; Burke, D. F.; von Delft, F.; Mulloy, B.;
Blundell, T. L. Nature 2000, 407, 1029.
21. Schlessinger, J.; Plotnikov, A. N.; Ibrahimi, O. A.;
Eliseenkova, A. V.; Yeh, B. K.; Yayon, A.; Linhardt, R.
J.; Mohammadi, M. Mol. Cell 2000, 6, 743.
22. Pluda, J. M. Semin. Oncol. 1997, 24, 203.
ꢁ
23. Fernandez-Tornero, C.; Lozano, R. M.; Redondo-Hor-
cajo, M.; Gomez, A. M.; Lopez, J. C.; Quesada, E.; Uriel,
ꢁ
ꢁ
ꢁ
C.; Valverde, S.; Cuevas, P.; Romero, A.; Gimenez-
Gallego, G. J. Biol. Chem. 2003, 278, 21774.
24. Murphy, P. V.; Pitt, N.; OꢂBrien, A.; Enright, P. M.;
Dunne, A.; Wilson, S. J.; Duane, R. M.; OꢂBoyle, K. M.
Bioorg. Med. Chem. Lett. 2002, 12, 3287.
25. Zhang, J.; Rivers, G.; Zhu, Y.; Jacobson, A.; Peyers, J.;
Grundstrom, G.; Burch, P.; Hussein, S.; Marolewski, A.;
Herlihy, W.; Rusche, J. Bioorg. Med. Chem. 2001, 9, 825.
26. Parish, C. R.; Freeman, C.; Brown, K. J.; Francis, D. J.;
Cowden, W. B. Cancer Res. 1999, 59, 3433.
ꢁ
ꢁ
27. Lozano, R. M.; Jimenez, M. A.; Santoro, J.; Rico, M.;
ꢁ
Gimenez-Gallego, G. J. Mol. Biol. 1998, 281, 899.
28. Cuevas, P.; Carceller, F.; Diaz, D.; Reimers, D.; Fernan-
ꢁ
dez, M.; Lozano, R. M.; Gonzalez-Corrochano, R.;
ꢁ
Gimenez-Gallego, G. Neurosci. Lett. 2001, 308, 185.
ꢁ
29. Pesenti, E.; Sola, F.; Mongelli, N.; Grandi, M.; Spreafico,
F. Br. J. Cancer 1992, 66, 367.
30. Firsching, A.; Nickel, P.; Mora, P.; Allolio, B. Cancer Res.
1995, 55, 4957.
1
729.0294; found: 729.0242 [M + H]þ. 14: H NMR: two
rotamers in a molar ratio of 70:30. Major rotamer: d 7.34–
7.16 (m, 5H, Ph), 5.95 (d, J1;2 ¼ 3:5 Hz, H1), 5.24 (d,
J4;5 ¼ 9:6 Hz, H5), 4.90, 4.47 (AB, JA;B ¼ 15:6 Hz, a-CH2),
4.67–4.57 (overlapped with water, 1H, H3), 4.54 (dd,
J3;4 ¼ 8:8 Hz, H4), 4.39 (dd, J2;3 ¼ 9:8 Hz, H2), 3.93, 3.75
(ABq, JA;B ¼ 16:8 Hz, b-CH2), 3.30–3.20 (m, 1H, cyclo-
hexyl CH), 1.65–1.35, 1.18–0.92 (2m, 5H each, cyclohexyl
CH2); minor rotamer: d 7.34–7.16 (m, 5H, Ph), 5.91 (d, 1H,
J1;2 ¼ 3:4 Hz, H1), 4.77–4.72 (m, 2H, H5 and H3or H4),
4.69, 4.22 (AB, JA;B ¼ 15:2 Hz, c-CH2), 4.67–4.56 (over-
lapped with water, 1H, H3or H4), 4.37 (dd, J2;3 ¼ 9:8 Hz,
H2), 4.26, 3.94 (AB, JA;B ¼ 18:4 Hz, d-CH2), 3.36–3.26 (m,
1H, cyclohexyl CH), 1.65–1.35, 1.18–0.92 (2m, 5H each,
cyclohexyl CH2); 13C NMR: major rotamer: d 172.4, 171.7
(2 · C ¼ O), 137.2, 131.7, 131.6, 131.1 (Ph), 97.7 (C1), 78.1
(C4), 77.6 (C3), 76.4 (C2), 70.1 (C5), 55.8 (a-CH2), 53.2
(b-CH2), 51.8 (cyclohexyl CH), 34.2, 27.6, 27.1 (cylcohexyl
CH2); minor rotamer: 97.6 (C1), 78.2 (C4), 77.8 (C3), 76.3
(C2), 71.0 (C5), 53.3 (d-CH2), 53.8 (c-CH2), 52.1 (cyclo-
hexyl CH), 34.3, 27.5, 27.1 (cylcohexyl-CH2); HRMS: m=z
31. Ciomei, M.; Pastori, W.; Mariani, M.; Sola, F.; Grandi,
M.; Mongelli, N. Biochem. Pharmacol. 1994, 47, 295.
ꢁ
32. Kerekgyarto, J.; Kamerling, J. P.; Bouwstra, J. B.;
Vliegenthart, J. F. G.; Liptak, A. Carbohydr. Res. 1989,
ꢁ ꢁ
ꢁ
186, 51.
33. Ogawa, T.; Yamamoto, H. Carbohydr. Res. 1982, 104, 271.
ꢁ
34. Boren, H. B.; Eklind, K.; Garegg, P. J.; Lindberg, B.;
Pilotti, A. Acta Chem. Scand. 1972, 26, 4143.
35. General procedure for the Ugi reaction: Solutions in MeOH
of the acid (1 equiv), amine (1 equiv), aldehyde (1 equiv)
and isocyanide (1 equiv) were transferred sequentially, in
that order, into a reaction vial (final concentration: 0.1–
0.5 M). When
D-glucuronic acid was the acid component,
it was added as a solid. When a bis-acid or bis-amine was
used, only 0.5 equiv of this component was added. The
mixture was shaken at rt for 24 h and the reaction was
monitored by TLC. The mixture was then evaporated in
vacuo and the residue either directly purified by flash
chromatography, or, for entries 1–4 in Table 1, subjected