10.1002/anie.201807181
Angewandte Chemie International Edition
COMMUNICATION
[7]
a) M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc.
2016, 138, 12692-12714; b) M. R. Heinrich, Chem. Eur. J. 2009, 15,
820-833; c) W. Liu, X. Yang, Y. Gao, C.-J. Li, J. Am. Chem. Soc.
2017, 139, 8621-8627.
[8]
[9]
a) A. S. Demir, Ö. Reis, M. Emrullahoglu, J. Org. Chem. 2003, 68,
578-580; b) A. Dickschat, A. Studer, Org. Lett. 2010, 12, 3972-3974.
a) I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara,
A. L. Sobel, P. S. Baran, J. Am. Chem. Soc. 2010, 132, 13194-
13196; b) J. W. Lockner, D. D. Dixon, R. Risgaard, P. S. Baran, Org.
Lett. 2011, 13, 5628-5631.
[10]
[11]
a) G. Sorin, R. Martinez Mallorquin, Y. Contie, A. Baralle, M.
Malacria, J.-P. Goddard, L. Fensterbank, Angew. Chem. Int. Ed.
2010, 49, 8721-8723; b) G. A. Molander, V. Colombel, V. A. Braz,
Org. Lett. 2011, 13, 1852-1855; c) M. Presset, N. Fleury-Brégeot, D.
Oehlrich, F. Rombouts, G. A. Molander, J. Org. Chem. 2013, 78,
4615-4619.
a) J. K. Matsui, D. N. Primer, G. A. Molander, Chem. Sci. 2017, 8,
3512-3522; b) D. R. Heitz, K. Rizwan, G. A. Molander, J. Org. Chem.
2016, 81, 7308-7313; c) Y. Yasu, T. Koike, M. Akita, Adv. Synth.
Catal. 2012, 354, 3414-3420; d) H. Huang, G. Zhang, L. Gong, S.
Zhang, Y. Chen, J. Am. Chem. Soc. 2014, 136, 2280-2283; e) T.
Koike, M. Akita, Synlett 2013, 24, 2492-2505; f) K. Miyazawa, Y.
Yasu, T. Koike, M. Akita, Chem. Commun. 2013, 49, 7249-7251; g)
M. Kazuki, K. Takashi, A. Munetaka, Adv. Synth. Catal. 2014, 356,
2749-2755; h) Y. Li, K. Miyazawa, T. Koike, M. Akita, Org. Chem.
Front. 2015, 2, 319-323;
[12]
[13]
F. Lima, U. K. Sharma, L. Grunenberg, D. Saha, S. Johannsen, J.
Sedelmeier, E. V. Van der Eycken, S. V. Ley, Angew. Chem. Int. Ed.
2017, 56, 15136-15140.
a) A. G. Davies, B. P. Roberts, Acc. Chem. Res. 1972, 5, 387-392;
b) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1969, 91, 3942-3944;
c) A. G. Davies, B. P. Roberts, Nature 1971, 229, 221-223; d) C.
Carra, J. C. Scaiano, Eur. J. Org. Chem. 2008, 2008, 4454-4459.
a) V. Darmency, P. Renaud, in Top. Curr. Chem. (Ed.: A. Gansäuer),
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 71-106; b)
J. A. Baban, N. J. Goodchild, B. P. Roberts, J. Chem. Soc., Perkin
Trans. 2 1986, 157-161.
a) E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf,
J. Org. Chem. 1995, 60, 3020-3027; b) G. A. Molander, N. Ellis, Acc.
Chem. Res. 2007, 40, 275-286; c) S. Darses, J.-P. Genet, Eur. J.
Org. Chem. 2003, 2003, 4313-4327; d) S. Darses, J.-P. Genet,
Chem. Rev. 2008, 108, 288-325; e) A. J. J. Lennox, G. C. Lloyd-
Jones, J. Am. Chem. Soc. 2012, 134, 7431-7441.
[14]
[15]
Figure 3. Mechanistic investigation. (a) UV-Vis spectroscopic analysis, (b)
triplet quencher pyrene retards the reaction, (c) triplet quencher oxygen
completely inhibits the reaction.
In summary, a general and convenient approach to produce
radicals from organotrifluoroborates promoted by visible light has
been established. This approach utilizes the triplet diacetyl to
activate organotrifluoroborate and proceeds under mild conditions
without strong redox-reagents, thereby avoiding the
stoichiometric metal waste. To demonstrate its synthetic utility, an
acetylation of organotrifluoroborates has been developed.
Moreover, the application in other contexts to synthesize carbon-
carbon and carbon-heteroatom bonds is also viable. This mild and
environmentally friendly approach to generate radicals is
anticipated to find applications in other radical engaged reactions.
[16]
A. G. Davies, D. Griller, B. P. Roberts, J. C. Scaiano, J. Chem. Soc.
D 1971, 196-197.
D. C. Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816-7817.
a) H. Fischer, Chem. Rev. 2001, 101, 3581-3610; b) T. Vogler, A.
Studer, Synthesis 2008, 1979-1993.
[17]
[18]
[19]
[20]
P. A. Cox, A. G. Leach, A. D. Campbell, G. C. Lloyd-Jones, J. Am.
Chem. Soc. 2016, 138, 9145-9157.
a) W. G. Bentrude, K. R. Darnall, J. Am. Chem. Soc. 1968, 90, 3588-
3589; b) I. Tabushi, S. Kojo, K. Fukunishi, J. Org. Chem. 1978, 43,
2370-2374; c) A. Citterio, M. Serravalle, E. Vismara, Tetrahedron
Lett. 1982, 23, 1831-1834; d) S. Kim, Adv. Synth. Catal. 2004, 346,
19-32.
[21]
[22]
H. Siegel., M. Eggersdorfer, in Ullmann's Encyclopedia of Industrial
Chemistry, Wiley-VCH Verlag GmbH: Germany, 2000, pp. 187-207.
a) S. D. Ramgren, N. K. Garg, Org. Lett. 2014, 16, 824-827; b) C. E.
Russell, L. S. Hegedus, J. Am. Chem. Soc. 1983, 105, 943-949; c)
A. Hallberg, L. Westfelt, B. Holm, J. Org. Chem. 1981, 46, 5414-
5415; d) H. B. Kwon, B. H. McKee, J. K. Stille, J. Org. Chem. 1990,
55, 3114-3118; e) M. Tanaka, Synthesis 1981, 1981, 47-48; f) B. W.
Michel, A. M. Camelio, C. N. Cornell, M. S. Sigman, J. Am. Chem.
Soc. 2009, 131, 6076-6077; g) T. Mitsudome, T. Umetani, N.
Nosaka, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Angew. Chem.
Int. Ed. 2006, 45, 481-485; h) T. Tachinami, T. Nishimura, R.
Ushimaru, R. Noyori, H. Naka, J. Am. Chem. Soc. 2013, 135, 50-
53; i) S. Liang, J. Jasinski, G. B. Hammond, B. Xu, Org. Lett. 2015,
17, 162-165.
The beneficial effect of acetic acid in this acetylation may be
attributed to the fact that protonation of diacetyl can increase its
electrophilicity since aryl and alkyl radicals are nucleophilic.
J. Amani, E. Sodagar, G. A. Molander, Org. Lett. 2016, 18, 732-735.
Please see SI for the possible mechanism to generate this by-
product.
Acknowledgements
We are grateful to the Canada Research Chair Foundation, the
CFI, FRQNT Center for Green Chemistry and Catalysis, NSERC,
and McGill University for supporting our research. W. L. is grateful
to McGill Chemistry department and P. L. is grateful to China
Scholarship Council for fellowship support. L. L is grateful for the
support from National Postdoctoral Program for Innovative
Talents (No. BX201700110) and China Postdoctoral Science
Foundation Funded Project (No. 2017M623270).
[23]
[24]
[25]
Keywords: organotrifluoroborate • radical • visible light • diacetyl
• SH2
[26]
[27]
a) K. D. Collins, F. Glorius, Acc. Chem. Res. 2015, 48, 619-627; b)
K. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597-601;
a) G. A. Molander, D. E. Petrillo, J. Am. Chem. Soc. 2006, 128,
9634-9635; b) G. A. Molander, D. J. Cooper, J. Org. Chem. 2007,
72, 3558-3560; c) G. A. Molander, L. N. Cavalcanti, J. Org. Chem.
2011, 76, 623-630; d) G. A. Molander, L. N. Cavalcanti, J. Org.
Chem. 2011, 76, 7195-7203;
[1]
D. G. Hall, in Boronic Acids, Wiley-VCH Verlag GmbH & Co. KGaA,
2011, pp. 1-133.
[2]
[3]
N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
N. R. Candeias, F. Montalbano, P. M. S. D. Cal, P. M. P. Gois, Chem.
Rev. 2010, 110, 6169-6193.
[28]
H. L. J. Bäckström, K. Sandros, Acta Chem. Scand. 1958, 12, 823-
832.
[4]
[5]
[6]
J. X. Qiao, P. Y. S. Lam, Synthesis 2011, 829-856.
T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829-2844.
C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415-3434.
This article is protected by copyright. All rights reserved.