1724
S. A. Babu et al.
PAPER
MS-FAB: m/z (%) = 359 (M+ + Na, 48), 167 (100).
HRMS-FAB: m/z [M + Na]+ calcd for C22H24NaO3: 359.1623;
Organomet. Chem. 1989, 361, C57. (e) Alkylation in AcOH
(15 mL) using allyl alcohol, see: Mukhopadhyay, M.; Iqbal,
J. Tetrahedron Lett. 1995, 36, 6761. Using allylic acetates,
for example, see: (f) Tanaka, Y.; Mino, T.; Akita, K.;
Sakamoto, M.; Fujita, T. J. Org. Chem. 2004, 69, 6679.
(8) (a) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett 2003,
1379. (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
(9) (a) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem. Int. Ed.
2006, 45, 793. In the course of this work the following
reports (using MeNO2 solvent) appeared very recently:
(b) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett.
2007, 9, 825. (c) Kischel, J.; Mertins, K.; Michalik, D.;
Zapf, A.; Beller, M. Adv. Synth. Catal. 2007, 349, 865.
(d) Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72,
5161. (e) Huang, W.; Wang, J.; Shen, Q.; Zhou, X.
Tetrahedron Lett. 2007, 48, 3969. (f) Brønsted acids in
heptane see: Motokura, K.; Nakagiri, N.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006.
(g) Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J.
M.; Rodriguez, F. Org. Lett. 2007, 9, 2027. (h) Surfactant
system, see: Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9,
311.
(10) (a) Bisaro, F.; Prestat, G.; Vitale, M.; Poli, G. Synlett 2002,
1823. (b) Gullickson, G. C.; Lewis, D. E. Aust. J. Chem.
2003, 56, 385. (c) Takahashi, H.; Kashiwa, N.; Kobayashi,
H.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2002,
43, 5751. (d) Coote, S. J.; Davies, S. G.; Middlemiss, D.;
Naylor, A. Tetrahedron Lett. 1989, 30, 3581. (e) Khalaf, A.
A.; Roberts, R. M. J. Org. Chem. 1972, 37, 4227.
(11) (a) The ability of a specific substance to convert
electromagnetic energy into heat at a given frequency and
temperature is determined by the so-called loss factor tand,
see ref. 1a. (b) Gabriel, C.; Gabriel, S.; Grant, E. H.;
Halstead, B. S. J.; Mingos, D. M. P. Chem. Soc. Rev. 1998,
27, 213. (c) Some other reactions for MW irradiation in
toluene are also known, see refs 1–3. (d) At this stage,
perhaps we cannot ignore the point that the reaction in
solvents having coordinating ability (with the catalyst)
might decrease the activation of the catalyst in MW
irradiation. We thank the referee for indicating this point.
(e) Exceptionally, in the case of toluene, no difference was
noted for the highly reactive substrates 1a/2a at this high
temperatures. (f) We used toluene because of its higher
boiling point than other nonpolar solvents and naturally,
toluene was selected as an ecofriendly solvent.
(12) 3a,d: Marquet, J.; Moreno-mañas, M. Synthesis 1979, 348.
(13) 3b: Karban, J. W.; Aparicio, M. K.; Palacios, R. R.;
Richardson, K. A.; Klausmeyer, K. K. Acta Crystallogr.
Sect. E 2004, 60, o2043.
found: 359.1627.
Acknowledgment
We thank the financial supports by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science,
and Technology, and Nippon Steel Chemical Co., Ltd, Japan. We
thank Mr. H. Moriguchi, Faculty of Engineering, for MS spectra.
References
(1) MW-assisted metal-based organic synthesis, see:
(a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Liu, S.; Xiao, J. J. Mol. Catal. A: Chem. 2007, 270, 1.
(c) Strauss, C. R.; Varma, R. S. Top. Curr. Chem. 2006, 266,
199. (d) de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Adv. Org.
Synth. 2005, 1, 119. (e) Larhed, M.; Moberg, C.; Hallberg,
A. Acc. Chem. Res. 2002, 35, 717.
(2) MW-assisted C–C coupling reactions, see: (a) Microwaves
in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH:
Weinheim, 2006. (b) Microwave-Assisted Organic
Synthesis; Tierney, J. P.; Lidstrom, P., Eds.; Blackwell:
Oxford, 2005. (c) Nilsson, P.; Olofsson, K.; Larhed, M. Top.
Curr. Chem. 2006, 266, 103. (d) Alonso, F.; Beletskaya, I.
P.; Yus, M. Tetrahedron 2005, 61, 11771. (e) Leadbeater,
N. E. Chem. Commun. 2005, 2881.
(3) Selected reports, see: (a) Koubachi, J.; El Kazzouli, S.;
Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. J. Org.
Chem. 2007, 72, 7650. (b) Pchalek, K.; Hay, M. P. J. Org.
Chem. 2006, 71, 6530. (c) Walla, P.; Kappe, C. O. Chem.
Commun. 2004, 564. (d) Lindh, J.; Enquist, P.-A.; Pilotti,
A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2007, 72, 7957.
(e) Erdelyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165.
(f) Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. Org. Lett.
2006, 8, 4351.
(4) For some reports using RX that undergo HX elimination,
see:Comprehensive Organic Synthesis, Vol. 3; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: Oxford, 1991.
(5) Cobalt derivatives in alkylation using RX, see: (a) Moreno-
Manas, M.; Marquet, J.; Vallribera, A. Tetrahedron 1996,
52, 3377. (b) Marquet, J.; Moreno-Manas, M.; Pacheco, P.;
Vallribera, A. Tetrahedron Lett. 1988, 29, 1465. Using
traditional bases, see: (c) Lee, H.-S.; Park, J.-S.; Kim, B.
M.; Gellman, S. H. J. Org. Chem. 2003, 68, 1575. (d) Zhu,
J.; You, L.; Zhao, S. X.; White, B.; Chen, J. G.; Skonezny,
P. M. Tetrahedron Lett. 2002, 43, 7585.
(6) For C–C coupling using alkenes, see: (a)Nguyen, R.-V.; Li,
C.-J. J. Am. Chem. Soc. 2005, 127, 17184. (b) Reetz, M. T.;
Chatziiosifidis, I.; Schwellnus, K. Angew. Chem., Int. Ed.
Engl. 1981, 20, 687. (c) Wang, X.; Pei, T.; Han, X.;
Widenhoefer, R. A. Org. Lett. 2003, 5, 2699. (d) Leitner,
A.; Larsen, J.; Steffens, C.; Hartwig, J. F. J. Org. Chem.
2004, 69, 7552. (e) Yip, K.-T.; Li, J.-H.; Lee, O.-Y.; Yang,
D. Org. Lett. 2005, 7, 5717. (f) Li, Z.; Li, C.-J. J. Am. Chem.
Soc. 2006, 128, 56.
(7) For alkylations using allylic alcohols involving a co-catalyst
under Tsuji–Trost-type conditions, see: (a) Ozawa, F.;
Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.;
Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
(b) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett.
2004, 6, 4085. (c) Kimura, M.; Mukai, R.; Tanigawa, N.;
Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767.
(d) Alkylation without a co-catalyst but with an equimolar
amount of catalyst, see: Baruah, J. B.; Samuelson, A. G. J.
(14) 3c: Sabatier, P.; Mailhe, A. C. R. Hebd. Seances Acad. Sci.
1907, 145, 1126.
(15) 3e,t: González, A.; Marquet, J.; Moreno-Mañas, M.
Tetrahedron Lett. 1988, 29, 1469.
(16) 3f: see ref. 6f.
(17) 3g: Nguyen, R.-V.; Yao, X.-Q.; Bohle, D. S.; Li, C.-J. Org.
Lett. 2005, 7, 673.
(18) 3h: see ref. 7e.
(19) 3j: see ref. 10a.
(20) 3m: Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007,
48, 4065.
(21) 3o: Uozumi, Y.; Danjo, H.; Hayashi, T. Tetrahedron Lett.
1997, 38, 3557.
(22) 3r: Polivin, Y. N.; Postnov, V. N.; Sazonova, V. A.;
Zagorevskii, D. V.; Nekrasov, Y. S.; Kharchevnikov, A. P.
J. Organomet. Chem. 1985, 288, 201.
(23) 3s: see ref. 9e.
Synthesis 2008, No. 11, 1717–1724 © Thieme Stuttgart · New York