ChemComm
Communication
´
4 J. A. Morales-Serna, O. Boutureira, Y. Dıaz, M. I. Mateu and
´
S. Castillon, Carbohydr. Res., 2007, 342, 1595–1612.
5 M. Kiso, H. Ishida, H. Ando and A. Imamura, in Glycoscience: Biology
and Medicine, ed. N. Tanigushi, T. Endo, G. W. Hart, P. H. Seeberger
and C.-H. Wong, Springer, Japan, 2015, pp. 331–338.
6 A. K. Yadav, D. L. Shen, X. Shan, X. He, A. R. Kermode and
D. J. Vocadlo, J. Am. Chem. Soc., 2015, 137, 1181–1189.
7 G.-Y. Yang, C. Li, M. Fischer, C. W. Cairo, Y. Feng and S. G. Withers,
Angew. Chem., Int. Ed., 2015, 54, 5389–5393.
8 N. Komura, K. G. N. Suzuki, H. Ando, M. Konishi, M. Koikeda,
A. Imamura, R. Chadda, T. K. Fujiwara, H. Tsuboi, R. Sheng,
W. Cho, K. Furukawa, K. Furukawa, Y. Yamaguchi, H. Ishida,
A. Kusumi and M. Kiso, Nat. Chem. Biol., 2016, 12, 402–410.
9 M. Budani, M. Mylvaganam, B. Binnington and C. Lingwood, J. Lipid
Res., 2016, 57, 1728–1736.
10 J. S. Schneider, A. Pope, K. Simpson, J. Taggart, M. G. Smith and
L. DiStefano, Science, 1992, 256, 843–846.
11 Y. Matsuoka, M. Saito, J. LaFrancois, M. Saito, K. Gaynor, V. Olm,
L. Wang, E. Casey, Y. Lu, C. Shiratori, C. Lemere and K. Duff,
J. Neurosci., 2003, 23, 29–33.
12 A. Di Pardo, V. Maglione, M. Alpaugh, M. Horkey, R. S. Atwal,
J. Sassone, A. Ciammola, J. S. Steffan, K. Fouad, R. Truant and
S. Sipione, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 3528–3533.
13 M. A. Peterson and R. Polt, J. Org. Chem., 1993, 58, 4309–4314.
14 R. R. Schmidt and P. Zimmermann, Angew. Chem., Int. Ed., 1986, 25,
725–726.
15 R. Di Benedetto, L. Zanetti, M. Varese, M. Rajabi, R. Di Brisco and
L. Panza, Org. Lett., 2014, 16, 952–955.
16 M. Schombs, F. E. Park, W. Du, S. S. Kulkarni and J. Gervay-Hague,
J. Org. Chem., 2010, 75, 4891–4898.
´
´
17 J. A. Morales-Serna, Y. Dıaz, M. I. Matheu and S. Castillon, Eur.
J. Org. Chem., 2009, 3849–3852.
18 K. Fujikawa, T. Nohara, A. Imamura, H. Ando, H. Ishida and
M. Kiso, Tetrahedron Lett., 2010, 51, 1126–1130.
19 M. D. Vaughan, K. Johnson, S. DeFrees, X. Tang, R. A. J. Warren and
S. G. Withers, J. Am. Chem. Soc., 2006, 128, 6300–6301.
20 J. R. Rich, A.-M. Cunningham, M. Gilbert and S. G. Withers, Chem.
Commun., 2011, 47, 10806–10808.
Scheme 3 Synthesis of b-galactosylceramide (4b) and b-lactosylceramide (4c).
Burns is gratefully acknowledged for assistance with NMR
spectroscopy.
21 K. A. D’Angelo and M. S. Taylor, J. Am. Chem. Soc., 2016, 138,
11058–11066.
22 M. Tanaka, D. Takahashi and K. Toshima, Org. Lett., 2016, 18,
5030–5033.
Notes and references
23 D. R. Mootoo, P. Konradsson, U. Ududong and B. Fraser-Reid,
J. Am. Chem. Soc., 1988, 110, 5583–5584.
24 C. Xia, Q. Yao, J. Schu¨mann, E. Rossy, W. Chen, L. Zhu, W. Zhang,
G. De Libero and P. G. Wang, Bioorg. Med. Chem. Lett., 2006, 16,
2195–2199.
25 Q. Yao, J. Song, C. Xia, W. Zhang and P. G. Wang, Org. Lett., 2006, 8,
911–914.
26 M. Seki, A. Kayo and K. Mori, Tetrahedron Lett., 2001, 42, 2357–2360.
‡ In a previous study, we found that (Ph2B)2O is the optimal catalyst for
activation of 1,3-diol groups in carbohydrate-derived substrates,
whereas an oxaboraanthracene-derived borinic acid provides superior
results for activation of cis-1,2-diol groups (ref. 21). Consistent with this
trend, (Ph2B)2O provided higher activity that the oxaboraanthracene-
derived catalyst for activation of the 1,3-diol group in a ceramide
acceptor.
1 T. Wennekes, R. J. B. H. N. van den Berg, R. G. Boot, G. A. van der 27 E. F. De Medeiros, J. M. Herbert and R. J. K. Taylor, J. Chem. Soc.,
Marel, H. S. Overkleeft and J. M. F. G. Aerts, Angew. Chem., Int. Ed.,
2009, 48, 8848–8869.
Perkin Trans. 1, 1991, 2725–2730.
28 T. M. Beale and M. S. Taylor, Org. Lett., 2013, 15, 1358–1361.
2 C. A. Lingwood, Cold Spring Harbor Perspect. Biol., 2011, 3, a004788. 29 S. O. Bajaj, E. U. Sharif, N. G. Akhmedov and G. A. O’Doherty,
3 Y. D. Vankar and R. R. Schmidt, Chem. Soc. Rev., 2000, 29, 201–216.
Chem. Sci., 2014, 5, 2230–2234.
This journal is ©The Royal Society of Chemistry 2017
Chem. Commun.