C O M M U N I C A T I O N S
piperidine treatment is known to act in a reciprocal manner by
preventing oxidation of 8-oxoG and strand scission.12a This modified
treatment also had no detectable effect on the yield of DNA
cleavage after reaction with 1, MPA, and O2.9 Thus, 8-oxoG is not
likely the product of oxidation under these conditions.
In summary, we have discovered a dicopper complex that
predominantly effects DNA base (rather than ribose) oxidation on
G residues in single-stranded regions of DNA. FAPy-G is one of
the major oxidation products derived from G. We hypothesize that
(i) the nature of the ligand-induced copper-dioxygen species and
(ii) copper-guanine binding18 are important elements in the
specificity of base recognition and oxidation. Further investigation
into the origins of these features are in progress.
Acknowledgment. We thank Dr. N. N. Murphy for helping with
the synthesis of the PD′OH ligand. This work was supported by
the NIH (GM28962 to K.D.K. and GM47531 to S.E.R.).
Supporting Information Available: Synthesis of the copper
complex (1) and PAGE analysis of DNA oxidation (PDF). This material
To provide further insight into the nucleobase (G) oxidation
chemistry, an oligodeoxynucleotide system (OD3 + OD4; Figure
1) of lower molecular weight than the original target was chosen
for analysis by mass spectrometry. Again, each strand contained
unpaired G’s for reaction with 1, and each demonstrated reactivity
similar to OD1 + OD2.9 Modification at ss G’s remained dominant
even after extended incubations (90 min, 65% yield) used to
maximize products for isolation and detection.9 Parent strands and
their derivatives were isolated from reverse-phase HPLC and
analyzed by nanospray ionization mass spectrometry (NSI/MS). For
OD3, major products of +18 amu and +34 amu were detected,9
and equivalent derivatives were detected for OD4. The species with
a +18 amu is consistent with formation of a 2,6-diamino-5-
formamidino-4-hydroxypyrimidine (FAPy-G) residue. Such a de-
rivative would explain the piperidine lability (see above). FAPy-G
is typically generated by hydroxyl radical addition followed by one-
electron reduction.11,14 Excess MPA likely facilitates the final
reduction step under the conditions used here.15 This product is
not consistent with generation of singlet oxygen (1O2) as proposed
for reaction of Cu(II) and H2O2.11d We only found one proposal in
the literature to explain the gain of + 34 amu.12b The suggested
product, 5,8-dihydroxy-7,8-dihydroguanine, is likely to be hydro-
lytically unstable and may rearrange to a more stable isomer.
The selectivity demonstrated by the copper complex 1 is atypical
at two levels. First, its preference for nucleobase rather than
deoxyribose oxidation is unlike most copper complexes known to
react with DNA. Although the copper-bound hydroxy radical
commonly proposed for reaction has the potential to add to guanine,
hydrogen abstraction of the deoxyribose is far more usual.10c,11a
Proximity and accessibility alone cannot explain the reaction
specificity because both 1 and 2 act on single-stranded regions that
should not restrict nucleotide access, and yet 1 primarily oxidizes
the nucleobase and 2 oxidizes the deoxyribose. Thorp has suggested
that systematic variation of ligand environment and accessibility
to a metal-oxo species may yield a series of oxidants selective for
either sugar or base.16 As mentioned above, [CuI2(D1)]2+ reacts with
O2 to produce a peroxo dicopper(II) complex,6 while the dicopper-
(I) analogue of 1 yields a hydroperoxo dicopper(II) complex.17
Theoretically, this latter species is a stronger (electrophilic) oxidant.8
Similar intermediates are expected to form during reaction with
DNA through initial MPA reduction of Cu(II) to Cu(I) followed
by reaction with ambient O2.5 Thus, the structural makeup or
specific nature of the dicopper-dioxygen intermediate instead of
its oxidizing power likely determines the type of DNA damage
produced.
References
(1) (a) Sigman, D. S.; Mazumder, A.; Perrin, D. M. Chem. ReV. 1993, 93,
2295-2316. (b) Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. ReV.
1999, 99, 2777-2795. (c) Claussen, C. A.; Long, E. C. Chem. ReV. 1999,
99, 2797-2816.
(2) (a) Sigman, D. S. Acc. Chem. Res. 1986, 19, 180-186. (b) Sigman, D.
S.; Bruice, T. W.; Mazumder, A.; Sutton, C. L. Acc. Chem. Res. 1993,
26, 98-104.
(3) (a) Chen, T. Q.; Greenberg, M. M. J. Am. Chem. Soc. 1998, 120, 3815-
3816. (b) Oyoshi, T.; Sugiyama, H. J. Am Chem. Soc. 2000, 122, 6313-
6314. (c) Pitie, M.; Burrows, C. J.; Meunier, B. Nucleic Acids Res. 2000,
28, 4856-4864. (d) Bales, B. C.; Pitie, M.; Meunier, B.; Greenberg, M.
M. J. Am Chem. Soc. 2002, 124, 9062-9063.
(4) For example, see: (a) Tu, C.; Shao, Y.; Gan, N.; Xu, Q.; Guo, Z. Inorg.
Chem. 2004, 43, 4761-4766. (b) Manderville, R. A.; Calcutt, M. W.;
Dai, J.; Park, G.; Gillman, I. G.; Noftle, R. E.; Mohammed, A. K.;
Dizdaroglu, M.; Rodriguez, H.; Akman, S. A. J. Inorg. Biochem. 2003,
95, 87-96. (c) Gonzalez-Alvarez, M.; Alzuet, G.; Borras, J.; Macias, B.;
Castineiras, A. Inorg. Chem. 2003, 42, 2992-2998. (d) Benites, P. J.;
Holmberg, R. C.; Rawat, D. S.; Kraft, B. J.; Klein, L. J.; Peters, D. G.;
Thorp, H. H.; Zaleski, J. M. J. Am. Chem. Soc. 2003, 125, 6434-6446.
(5) (a) Humphreys, K. J.; Karlin, K. D.; Rokita, S. E. J. Am. Chem. Soc.
2001, 123, 5588-5589. (b) Humphreys, K. J.; Johnson, A. E.; Karlin, K.
D.; Rokita, S. E. J. Biol. Inorg. Chem. 2002, 7, 835-842. (c) Humphreys,
K. J.; Karlin, K. D.; Rokita, S. E. J. Am. Chem. Soc. 2002, 124, 6009-
6019. (d) Humphreys, K. J.; Karlin, K. D.; Rokita, S. E. J. Am Chem.
Soc. 2002, 124, 8055-8066.
(6) (a) Lee, D.-H.; Wei, N.; Murthy, N. N.; Tyekla´r, Z.; Karlin, K. D.; Kaderli,
S.; Jung, B.; Zuberbu¨hler, A. D. J. Am. Chem. Soc. 1995, 117, 12498-
12513. (b) Karlin, K. D.; Lee, D.-H.; Kaderli, S.; Zuberbu¨hler, A. D. Chem.
Commun. 1997, 475-476.
(7) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV. 2004,
104, 1013-1045. (b) Lewis, E. A.; Tolman, W. B. Chem. ReV. 2004,
104, 1047-1076. (c) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem.
2004, 9, 669-683.
(8) (a) Karlin, K. D.; Ghosh, P.; Cruse, R. W.; Farooq, A.; Gultneh, Y.;
Jacobson, R. R.; Blackburn, N. J.; Strange, R. W.; Zubieta, J. J. Am. Chem.
Soc. 1988, 110, 6769-6780. (b) Murthy, N. N.; Mahroof-Tahir, M.; Karlin,
K. D. Inorg. Chem. 2001, 40, 628-635. (c) Root, D. E.; Mahroof-Tahir,
M.; Karlin, K. D.; Solomon, E. I. Inorg. Chem. 1998, 37, 4838-4848.
(9) See Supporting Information.
(10) (a) Roupioz, Y.; Lhomme, J.; Kotera, M. J. Am. Chem. Soc. 2002, 124,
9129-9135. (b) Carter, K. N.; Greenberg, M. M. J. Am. Chem. Soc. 2003,
125, 13376-13378. (c) Pogozelski, W. K.; Tullius, T. D. Chem. ReV.
1998, 98, 1089-1107.
(11) (a) Burrows, C. J.; Muller, J. G. Chem. ReV. 1998, 98, 1109-1151. (b)
Kennedy, L. J.; More, K.; Caulfield, J. L.; Tannenbaum, S. R.; Dedon, P.
C. Chem. Res. Toxicol. 1997, 10, 386-392. (c) Liang, Q.; Dedon, P. C.
Chem. Res. Toxicol. 2001, 14, 416-422. (d) Frelon, S.; Douki, T.; Favier,
A.; Cadet, J. Chem. Res. Toxicol. 2003, 16, 191-197. (e) Dizdaroglu,
M.; Aruoma, O. I.; Halliwell, B. Biochemistry 1990, 29, 8447-8451. (f)
Aruoma, O. I.; Halliwell, B.; Gajewski, E.; Dizdaroglu, M. Biochem. J.
1991, 273, 601-604.
The DNA sequence targeted by 1 represents the second level of
specificity that is distinct from other multinuclear copper complexes.
A ss/ds junction of DNA is not an absolute requirement for 1 as it
is for 2 or a related trinuclear copper complex.5 In all cases,
oxidation is excluded from duplex regions and products form in a
highly localized manner. Together, these observations are consistent
with the formation of copper-based intermediates that deliver their
oxidizing power directly and alternatively to guanine or deoxyri-
bose. Diffusible oxidants such as reactive oxygen species are
avoided under these conditions. Direct coordination between the
copper complex and DNA may be inferred but would be destroyed
before electrophoretic analysis by the quenching and denaturing
conditions.
(12) (a) Cullis, P. M.; Malone, M. E.; Merson, L. A. J. Am. Chem. Soc. 1996,
118, 2775-2781. (b) Vialas, C.; Claparols, C.; Pratviel, G.; Meunier, B.
J. Am. Chem. Soc. 2000, 122, 2157-2167.
(13) Muller, J. G.; Duarte, V.; Hickerson, R. P.; Burrows, C. J. Nucleic Acids
Res. 1998, 26, 2247-2249.
(14) Breen, A. P.; Murphy, J. A. Free Radical Biol. Med. 1995, 18, 1033-
1077.
(15) O’Neill, P. Int. J. Radiat. Biol. 1983, 44, 198-210.
(16) Thorp, H. H. AdV. Inorg. Chem. 1995, 43, 127-177.
(17) Li, L.; Murthy, N. N.; Karlin, K. D. Unpublished observations.
(18) (a) Metal ion (including copper) binding to guanine N7 is well-known.
See: Martin, R. B. Acc. Chem. Res. 1985, 18, 32-38. (b) Preliminary
data with 1 and a dizinc analogue indicate chelation of guanosine in
crystals with one metal ion coordinated to N7 and the other coordinated
to O6.
JA044209E
9
J. AM. CHEM. SOC. VOL. 127, NO. 2, 2005 521