C O M M U N I C A T I O N S
Table 2. Nickel-Catalyzed Reaction of Aldehyde 1 with MCP 2a
which gives ketones 3-10 via reductive elimination.12 Cyclopropane
11 may be formed via direct reductive elimination from B, probably
because intramolecular coordination of the vinyl group in the aldehyde
partially suppresses the ꢀ-carbon elimination.
Scheme 1. Possible Mechanism
In conclusion, we have established an efficient method for
conversion of aldehydes to γ,δ-unsaturated ketones via nickel-
catalyzed ring-opening hydroacylation of MCPs. The reaction is
applicable to a wide array of aldehydes and proceeds with high
stereospecificity and regioselectivity for the cleavage of the
cyclopropane ring.
Acknowledgment. H.T. acknowledges JSPS for fellowship
support.
Supporting Information Available: Experimental details and
product characterization data. This material is available free of charge
References
(1) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869.
(2) Examples: (a) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55,
2554. (b) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org.
Chem. 1997, 62, 4564. (c) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2001,
123, 11492. (d) Jun, C.-H.; Lee, H.; Hong, J.-B.; Kwon, B.-I. Angew. Chem.,
Int. Ed. 2002, 41, 2146. (e) Willis, M. C.; Randel-Sly, H. E.; Woodward,
R. L.; McNally, S. J.; Currie, G. S. J. Org. Chem. 2006, 71, 5291.
(3) Examples: (a) Kondo, T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe,
Y.; Mitsudo, T. Organometallics 1998, 17, 2131. (b) Sato, Y.; Oonishi,
Y.; Mori, M. Angew. Chem., Int. Ed. 2002, 41, 1218. (c) Osborne, J. D.;
Randell-Sly, H. E.; Currie, G. S.; Cowley, A. R.; Willis, M. C. J. Am.
Chem. Soc. 2008, 130, 17232. (d) Omura, S.; Fukuyama, T.; Horiguchi,
J.; Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094. (e)
Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130,
14120.
(4) Examples: (a) Sakai, K.; Ide, J.; Oda, O.; Nakamura, N. Tetrahedron Lett.
1972, 13, 1287. (b) Lochow, C. F.; Miller, R. G. J. Am. Chem. Soc. 1976,
98, 1281. (c) Larock, R. C.; Oertle, K.; Potter, G. F. J. Am. Chem. Soc.
1980, 102, 190. (d) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7,
936. (e) Kundu, K.; McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem.
Soc. 2005, 127, 16042. Reviews: (f) Bosnich, B. Acc. Chem. Res. 1998,
31, 667. (g) Tanaka, M.; Sakai, K.; Suemune, H. Curr. Org. Chem. 2003,
7, 353. (h) Fu, G. C. In Modern Rhodium-Catalyzed Organic Reactions;
Evans, P. A., Ed.; Wiley-VCH; Weinheim, Germany, 2005; p 79.
(5) (a) Brandi, A.; Goti, A. Chem. ReV. 1998, 98, 589. (b) Nakamura, I.;
Yamamoto, Y. AdV. Synth. Catal. 2002, 344, 111. (c) Brandi, A.; Cicchi,
S.; Cordero, F. M.; Goti, A. Chem. ReV. 2003, 103, 1213. (d) Rubin, M.;
Rubina, M.; Gevorgyan, V. Chem. ReV. 2007, 107, 3117.
(6) Pd-catalyzed cycloaddition of MCPs with aldehydes: Nakamura, I.; Oh,
B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298.
(7) A¨ıssa, C.; Fu¨rstner, A. J. Am. Chem. Soc. 2007, 129, 14836.
(8) Our research on transition-metal-catalyzed reaction with MCPs: (a)
Suginome, M.; Matsuda, T.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 11015.
(b) Ohmura, T.; Taniguchi, H.; Kondo, Y.; Suginome, M. J. Am. Chem.
Soc. 2007, 129, 3518. (c) Shirakura, M.; Suginome, M. J. Am. Chem. Soc.
2009, 131, 5060. (d) Ohmura, T.; Taniguchi, H.; Suginome, M. Org. Lett.
2009, 11, 2880.
(9) GC/MS analysis indicated the formation of the dimer of 2a as a major
byproduct. For the structure of the dimer, see the Supporting Information.
(10) Isomerization of initially formed cis-3g to the trans isomer was observed
in the reaction of 1g with 2a under these conditions.
a 1 (0.20 mmol), 2 (0.40 mmol), Ni(cod)2 (10 µmol), and P(n-Bu)3
(10 µmol) were stirred in toluene (0.1 mL) at 60 °C, unless otherwise
noted. b Isolated yield based on 1. c cis/trans ) 98:2. d cis/trans ) 98:2.
e At 80 °C. f cis/trans ) 91:9. g cis/trans ) 58:42. h At 100 °C. i 2b (cis/
trans ) 92:8) was used. j dr ) 94:6. k 2c (0.30 mmol) was used. l Yield
of major isomer.
(11) Substituted MCPs such as benzylidenecyclopropane and (3-phenylpropyl-
idene)cyclopropane did not give clean reactions. See the Supporting
Information.
intermediate B, as shown in Scheme 1. Oxidative addition of the C-H
bond of the formyl group in 1 followed by coordination of 2 gives
complex A, which affords acyl(cyclopropylmethyl)nickel complex B
by insertion of the CdC bond into the Ni-H bond. Intermediate B
undergoes ꢀ-carbon elimination to form acyl(homoallyl)nickel C,
(12) Reaction of naphthaldehyde-a-d1 with 2a gave deuterated 3b having a
1-deuterioethenyl group (99% D). For details, see the Supporting Information.
JA9046894
9
J. AM. CHEM. SOC. VOL. 131, NO. 32, 2009 11299