Table 1 DFT calculated bond lengths (in Å) for (MeN)(MeNSiMe22nCln–
H)Mo(Cl)(PMe3)2 (n = 0–2)
SiCl2
SiCl2 (11) (11a)
Bond\SiR2
SiMe2 (9)a
SiMeCl (10)a
Mo–Si
Mo–N(Si)
Mo–Pb
Mo–H
Mo–Cl
Si–H
2.673 [2.668(1)]
2.092 [2.122(3)]
2.453 [2.482(2)]
1.953 [1.92(4)]
2.620 [2.551(1)]
1.618 [1.54(4)]
1.716 [1.676(4)]
2.662 [2.657(1)]
2.112 [2.157(4)]
2.443 [2.474(2)]
1.992 [1.93 (4)]
2.613 [2.538(1)]
1.589 [1.51(3)]
1.684 [1.643(4)]
2.661
2.137
2.431
2.085
2.562
1.558
1.666
3.093
2.142
2.496
—
2.534
1.493
1.678
Chart 1 DCD model for the Si–H…M bonding
increasing Mo?(H–Si) s* back-donation.1a,1c These changes
affect the Mo–Si and Mo–H interactions unevenly, since the Si–H
bonding orbital is more localized on the H atom, whereas the (Si–
H) s* orbital has a bigger contribution from Si.
Si–N
a Experimental values for 7 and 8 in brackets; the Si–H atom was located
from difference maps and refined. b PMe3 trans to Mo…H–Si.
GIN is grateful to the Royal Society of Chemistry for an
International author Award and INTAS for a YS INTAS fellow-
ship. SKI and AGR thank RFBR for financial support (project
03-03-33120). PM and GIN thank the Royal Society (London) for
generous support.
normally be rationalized in terms of a more advanced oxidative
addition of the H–Si bond to the metal which clearly contradicts the
increase in 1J(Si–H) from 7 to 8.
To shed more light on these apparently conflicting results we
carried out DFT calculations on the model complexes (MeN)(MeN-
SiMe22nCln–H)MoCl(PMe3)2 (n = 0 (9), 1 (10), 2 (11)).‡ The
optimized structures for 9 (model for 7) and 10 (model for 8) are in
good accord with the experimental ones (Table 1). As the number
of Cl groups on the silicon atom increases, the Mo–Si bond lengths
decrease only slightly and, unexpectedly, become slightly weaker,
as evidenced by the decrease in the Wiberg bond indices (WI =
0.1471 for 9, 0.1445 for 10 and 0.1426 for 11).10‡ Moreover,
increased chlorine substitution does not tend towards cleavage of
the Si–H bond. In fact, the Si–H bond contracts and strengthens (WI
= 0.5830 for 9 versus 0.6171 for 10 and 0.6649 for 11), whereas the
Mo–H bond length increases from 1.953 Å to 2.085 Å and weakens
(WI = 0.2190, 0.1888, 0.1453 from 9 to 11). This is also reflected
in the Mo–P bond length to the PMe3 trans to Mo…H–Si, which
becomes shorter and stronger as the Si–H binds less strongly.
An AIM (atoms in molecules) analysis11 of 9–11 revealed a
bifurcated topological structure with a Mo–Si bond critical point
(rc) coalescing with the ring critical point (3,+1), leading to a
degenerate critical point structure. As is typical for agostic
systems12 the M–H bond critical point has a large ellipticity, which
increases from 9 to 11 (1.547 to 6.880), thus confirming the
weakening of the Mo–H bond. In contrast, the Si–H bond
strengthens as the number of Cl groups increases, as shown by a
significant decrease of the energy density values11b,c from 20.3682
to 20.4540 hartree Å23.‡
Notes and references
b315517j/ for crystallographic data in .cif or other electronic format.
1 (a) G. J. Kubas, Metal Dihydrogen and s-Bond Complexes, Kluwer
Academic/Plenum, New York, 2001; (b) R. H. Crabtree, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 789; (c) U. Schubert, Adv. Organomet. Chem.,
1990, 30, 151; (d) J. Y. Corey and J. Braddock-Wilking, Chem. Rev.,
1999, 99, 175; (e) G. I. Nikonov, J. Organomet. Chem, 2001, 635, 24;
(f) Z. Lin, Chem. Soc. Rev., 2002, 31, 239.
2 d0 N–Si–H…M: (a) W. A. Herrmann, N. W. Huber and J. Behm, Chem.
Ber., 1992, 125, 1405; (b) L. J. Procopio, P. J. Carroll and D. H. Berry,
J. Am. Chem. Soc., 1994, 116, 177; (c) W. A. Herrmann, J. Eppinger, M.
Spiegler, O. Runte and R. Anwander, Organometallics, 1997, 16, 1813;
(d) I. Nagl, W. Scherer, M. Tafipolsky and R. Anwander, Eur. J. Inorg.
Chem., 1999, 1405; (e) J. Eppinger, M. Spiegler, W. Hieringer, W. A.
Herrmann and R. Anwander, J. Am. Chem. Soc., 2000, 122, 3080; (f) M.
G. Klimpel, H. W. Görlitzer, M. Tafipolsky, M. Spiegler, W. Scherer
and R. Anwander, J. Organomet. Chem., 2002, 647, 236.
3 C–Si–H…M: (a) U. Schubert, M. Schwartz and F. Möller, Organome-
tallics, 1994, 13, 1554; (b) J. Yin, J. Klozin, K. Abboud and W. M.
Jones, J. Am. Chem. Soc., 1995, 117, 3298; (c) N. .Peulecke, A. Ohff, P.
Kosse, A. Tillack, A. Spannenberg, R. Kempe, W. Baumann, V. V.
Burlakov and U. Rosenthal, Chem. Eur. J., 1998, 4, 1852; (d) M.-F. Fan
and Z. Lin, Organometallics, 1997, 16, 494; (e) F. Delpesh, S. Sabo-
Ettienne, B. Donnadieu and B. Chaudret, Organometallics, 1998, 17,
4926; (f) D. H. Berry, V. K. Dioumaev and P. J. Carroll, Angew. Chem.,
Int. Ed., 2003, 42, 3947.
4 P–Si–H…M:(a) M. Driess, H. Pritzkow and M. Reisgys, Angew. Chem.,
Int. Ed. Engl., 1992, 31, 1510; (b) M. Driess, H. Pritzkow and M.
Reisgys, Chem. Ber., 1996, 129, 247.
5 U. Schubert and H. Giges, Organometallics, 1995, 15, 2373.
6 (a) A. D. Sadow and T. D. Tilley, J. Am. Chem. Soc., 2003, 125, 9462;
(b) B. Mork and T. D. Tilley, Angew. Chem., Int. Ed. Engl., 2003, 42,
357; (c) T. I. Gountchev and T. D. Tilley, J. Am. Chem. Soc., 1997, 119,
12831.
The formation of (ArAN–SiHCl)2 and (ArAN)MoCl2(PMe3)3
(rather than a product analogous to compounds 7 and 8 and model
11) in the reaction with HSiCl3 provides further insight into this
system. Optimization of the Si–Cl…Mo bonded structure 11a
(model for a likely intermediate) gave an energy only ca. 1 kcal
above that of agostic 11. This is accounted for by the expected
increase in Si–H bond strengths on increased Cl substitution at
silicon due to increased Si 3s contribution in accordance with the
Bent’s rule.13 b-Cl elimination from the real intermediate corre-
sponding to 11a would ultimately yield the observed products
(ArAN–SiHCl)2 and (ArAN)MoCl2(PMe3)3.
These surprising results can be rationalized by a Dewar–Chatt–
Duncanson (DCD) model (Chart 1) adjusted by Bent’s rule.7b
Sequential substitution of the Me groups on Si for an electron-
withdrawing Cl group provides more Si 3s character in the Si–H
bond,13 contracting this bond and making it a worse s-donor, and
thus decreasing the donation component in the DCD scheme. This,
and the increased Si 3s character, account for the increase in the Si–
H coupling constant from 7 to 8. On the other hand, introduction of
the Cl groups, makes the Si atom more Lewis acidic, thus
7 (a) D. L. Lichtenberger, Organometallics, 2003, 32, 1599; (b) G. I.
Nikonov, Organometallics, 2003, 32, 1597.
8 (a) S. R. Dubberley, S. K. Ignatov, N. H. Rees, A. G. Razuvaev, P.
Mountford and G. I. Nikonov, J. Am. Chem. Soc., 2003, 125, 644; (b) G.
I. Nikonov, P. Mountford and S. R. Dubberley, Inorg. Chem., 2003, 42,
58; (c) G. I. Nikonov, P. Mountford, S. K. Ignatov, J. C. Green, P. A.
Cooke, M. A. Leech, L. G. Kuzmina, A. G. Razuvaev, N. H. Rees, A.
J. Blake, J. A. K. Howard and D. A. Lemenovskii, J. Chem. Soc., Dalton
Trans., 2001, 2903.
9 A similar compound (ButN–SiClH)2: S. Bartholmei, U. Klingebiel, G.
M. Schledrick and D. Stalke, Z. Anorg.Allg. Chem, 1988, 556, 129.
10 K. B. Wiberg, Tetrahedron, 1968, 24, 1024.
11 (a) R. F. Bader, Atoms in Molecules: A Quantum Theory, Clarendon,
New York, 1990; (b) D. Cremer and E. Kraka, Angew. Chem., 1984, 96,
612; (c) D. Cremer and E. Kraka, Croat. Chem. Acta, 1984, 57, 1259.
12 W. Scherer, W. Hieringer, M. Spiegler, P. Sirsch, G. S. McGrady, A. J.
Downs, A. Haaland and B. Pedersen, Chem. Commun., 1998, 2471.
13 H. A. Bent, Chem. Rev., 1961, 61, 275.
C h e m . C o m m u n . , 2 0 0 4 , 9 5 2 – 9 5 3
953