ORGANIC
LETTERS
2004
Vol. 6, No. 11
1693-1696
Redox Behavior of Ferrocene-Containing
Rotaxane: Transposition of the
Rotaxane Wheel by Redox Reaction of a
Ferrocene Moiety Tethered at the End of
the Axle
,†
Nobuhiro Kihara,* Makiko Hashimoto, and Toshikazu Takata*
Department of Applied Chemistry, Graduate School of Engineering,
Osaka Prefecture UniVersity, Gakuen-cho, Sakai, Osaka 599-8531, Japan
Received January 30, 2004
ABSTRACT
A rotaxane with a ferrocene moiety at the axle terminus was prepared. The redox potential of the ferrocene moiety decreased by ca. 80 mV
when the rotaxane had a crown ether wheel capable of moving on the axle. Thus, the stabilization of the oxidized state of the ferrocene moiety
is assumed to accompany the transposition of the wheel component on the axle toward the ferrocene moiety.
Interlocked molecules such as rotaxanes and catenanes are
characterized by the relative movements of a component
against its counterpart.1 Because these movements are similar
to basic mechanical motions, much attention has been paid
to the construction and the motion of interlocked-molecule-
based molecular machines, which are driven by an inter-
component interaction.2 The redox system is one of the most
promising methods to control this interaction because of its
compatibility to electric circuits.3 Sauvage et al. demonstrated
the redox reactions of copper ions to control the intercom-
ponent metal-ligand interaction, thus inducing drastic con-
formational changes of the interlocked compounds.4 Stoddart
et al. demonstrated that the reduction of viologen or oxidation
of TTF resulted in a change in intercomponent CT interaction
or electrostatic repulsion to induce the transposition of the
wheel component on the counterpart axle.3,5 Their studies
prompted us to investigate the ferrocene-based redox system
for the control of component transposition, given that
† Present address: Department of Organic and Polymeric Materials,
Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan.
(1) (a) Sauvage, J.-P.; Dietrich-Buchecker, C. Molecular Catenanes,
Rotaxanes and Knots; Wiley-VCH: Weinheim, 1999. (b) Alteri, A.; Gatti,
F. G.; Kay, E. R.; Leigh, D. A.; Martel, D.; Paolucci, F.; Slawin, A. M. Z.;
Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 8644 and references therein.
(2) (a) Stoddart, J. F. Acc. Chem. Res. 2001, 34, 410. (b) Balzani, V.;
Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39,
3349. (c) Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Dress, K.
R.; Ishow, E.; Kleverlaan, C. J.; Kocian, O.; Preece, J. A.; Spencer, N.;
Stoddart, J. F.; Venturi, M.; Wenger, S. Chem. Eur. J. 2000, 6, 3558. Very
recently, a supramolecular machine based upon the secondary ammonium
ion/crown ether interaction was shown to be driven by the redox properties
of a ferrocene unit in a system similar to that reported here; see: Horie,
M.; Suzaki, Y.; Osakada, K. J. Am. Chem. Soc. 2004, 126, 3684.
(3) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.;
Heath, J. R. Acc. Chem. Res. 2001, 34, 433.
(4) (a) Collin, J.-P.; Dietrich-Buchecker, C.; Gavin˜a, P.; Jimenez-Molero,
M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477. (b) Collin, J.-P.;
Gavin˜a, P.; Heitz, V.; Sauvage, J.-P. Eur. J. Inorg. Chem. 1998, 1.
(5) (a) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi,
M. Acc. Chem. Res. 2001, 34, 445. (b) Segura, J. L.; Mart´ın, N. Angew.
Chem., Int. Ed. 2001, 40, 1372. (c) Jeppesen, J. O.; Nielsen, K. A.; Perkins,
J.; Vignon, S. A.; Di Fabio, A.; Ballardini, R.; Gandolfi, M. T.; Venturi,
M.; Balzani, V.; Becher, J.; Stoddart, J. F. Chem. Eur. J. 2003, 9, 2982.
10.1021/ol049817d CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/27/2004