10.1002/cphc.201800945
ChemPhysChem
COMMUNICATION
In conclusion, we have located computationally and detected
Acknowledgements
experimentally
a previously unknown reaction of carbonyl
compounds – pericyclic transfer of a CH2 unit from one carbonyl
group to another. Although the activation barriers are high, they
might decrease by appropriate choice of a catalyst and accurate
tuning of the conditions of microdroplets generation,[10] giving
access to practically important transformations. These findings
demonstrate potential of thorough computational studies of simple
molecules and versatility of heated capillary electrospray mass
spectrometry experimental detection of thermodynamically unstable
products in the reactions with high activation barriers.
IDG thanks Prof. Masahiro Terada (Tohoku University) and Prof.
Wanbin Zhang (Shanghai Jiao Tong University) for their
continuous support and fruitful discussions.
AZ and YK
acknowledge financial support from Russian Science Foundation
through Grant No. 18-79-10127.
Keywords: carbonyl compounds • ab initio calculations • MS
spectrometry • heated capillary • DFT
1
2
F. A Carey, R. J. Sundberg, Advanced Organic Chemistry, Part B:
Reactions and Synthesis. Springer, New York, Fifth Edition 2007.
D. Caine in Carbon-Carbon Bond Formation, Vol. 1, R. L. Augustine,
Ed. Marcel Dekker, New York, 1979, Chpt. 2.
3
4
5
C. H. Heathcock, Modern Synthetic Methods 1993,
6, 1.
Modern Aldol Reactions, R. Mahrwald Ed. Wiley-VCH, Weinheim, 2004
.
S. Masamune, W. Choy, J. S. Petersen, L. R. Sita. Ang. Chem. Int. Ed.
Engl. 1985, 24, 1-30.
6
7
R. M. Bain, C. J. Pulliam, R. G. Cooks, Chem. Science 2015, 6, 397-
401, and references therein.
a) R. Augusti, H.Chen, L. S. Eberlin, M. Nefliu, R. G. Cooks, Int. J. Mass
Spectrom. 2006, 253, 281-287; b) J. K. Lee, S. Kim, H. G. Nam, R. N.
Zare, Proc. Natl. Acad. Sci. USA 2015, 112, 3898-3903; c) S. Banerjee,
R. N. Zare, Angew. Chem. Int. Ed. 2015, 54, 14795-14799.
Y. Li, X.Yan, R. G. Cooks, Angew. Chem. Int. Ed. 2016, 55, 3433-3437.
a) Z. Wei, X. Zhang, J. Wang, S. Zhang, X. Zhang, R. G. Cooks, Chem.
Sci. 2018, 9, 7786; b) X. Yan, H. Cheng, R. N. Zare, Angew. Chem. Int.
Ed. 2017, 56, 3562-3565; c) R. M. Bain, S. Sathyamoorthi, R. N. Zare,
Angew. Chem. Int. Ed. 2017, 56, 15083-15087.
8
9
10 R. M. Bain, C. J. Pulliam, F. Thery, R. G. Cooks, Angew. Chem. Int. Ed.
2016, 55, 10478-10482.
Scheme 7. Computed intramolecular formation of oxirane 13 and degenerate
rearrangement in 14 (B97XD/6-31G(d,p)/SMD(heptane)). Computed
imaginary frequencies (cm-1), activation and reaction enthalpies (kJ mol-1),
activation and reaction entropies (J mol-1 K-1).
11 J. D. Chai, M. H.Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-
6620.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.
C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M.
Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox,
Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
13 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009,
113, 6378-6396.
Experimental Section
DFT Computations were carried out using the long-range corrected hybrid
functional with damped atom—atom dispersion (B97XD)11 as implemented in
the GAUSSIAN 09 software package12 on the 6-31G(d,p) basis. MP2
computations applied the same basis. Solvent effects were accounted by
carrying out optimizations in the SMD force field13 (acetone, acetonitrile or
heptane).
All chemicals were of reagent grade or higher. Methanol (Lab-Scan, HPLC
grade) was used as a solvent for MS experiments. For measuring mass spectra
a custom built QExactive Orbitrap mass spectrometer (Thermo) equipped with
ion funnel and extended metal desolvating capillary and electrospray ionization
source was used.[14] Mass spectra were recorded by Orbitrap in positive ion
mode with the resolving power of 140 000. Heating of capillary was performed
using lab power supply OJE QJ3003C III implemented in series mode. Mass-
spectra treatment and modelling were performed with Thermo Xcalibur 3.0
software.
14 Y. Kostyukevich, E. Nikolaev, Analytical chemistry 2018, 90, 3576-3583.
This article is protected by copyright. All rights reserved.