Organic Letters
Letter
(2) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1−48.
rationalized on the basis of the transition-state models in Figure
4. The TMSOTf-catalyzed reactions of alkenol 4 and an aromatic
aldehyde would lead to the formation of oxocarbenium ion
intermediates 14a and 14b.
(3) Overman, L. E.; Blumenkopf, T. A.; Castaneda, A.; Thompson, A.
S. J. Am. Chem. Soc. 1986, 108, 3516−3517.
(4) Harrison, B.; Crews, P. J. Org. Chem. 1997, 62, 2646−2648.
(5) Kim, G.; Sohn, T.-I.; Kim, D.; Paton, R. Angew. Chem., Int. Ed. 2004,
53, 272−276.
(6) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193−
4205.
(7) Kleinke, A. S.; Webb, D.; Jamison, T. F. Tetrahedron 2012, 68,
6999−7018.
(8) Kreiter, C. G.; Lehr, K.; Leyendecker, M.; Sheldrick, W. S.; Exner,
R. Chem. Ber. 1991, 124, 3−12.
(9) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95−102.
(10) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881−930.
(11) Guyot, B.; Pornet, J.; Miginiac, L. J. Organomet. Chem. 1989, 373,
279−288.
(12) Roxburgh, C. J. Tetrahedron 1993, 49, 10749−10784.
(13) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073−2077.
(14) Bamford, S. J.; Goubitz, K.; van Lingen, H. L.; Luker, T.; Schenk,
H.; Hiemstra, H. J. Chem. Soc. Perkin Trans. 1 2000, 345−351.
(15) Blumenkopf, T. A.; Bratz, M.; Castaneda, A.; Look, G. C.;
Overman, L. E.; Rodriguez, D.; Thompson, A. S. J. Am. Chem. Soc. 1990,
112, 4386−4399.
(16) Blumenkopf, T. A.; Look, G. C.; Overman, L. E. J. Am. Chem. Soc.
1990, 112, 4399−4403.
(17) Carreno, M. C.; Des Mazery, R.; Urbano, A.; Colobert, F.;
Solladie, G. Org. Lett. 2005, 7, 2039−2042.
Figure 4. Stereochemical analysis for cis-oxocene products.
(18) Ghosh, A. K.; Nicponski, D. R. Org. Lett. 2011, 13, 4328−4331.
(19) Ghosh, A. K.; Kass, J.; Nicponski, D.; Keyes, C. Synthesis 2012, 44,
3579−3589.
(20) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am.
Chem. Soc. 1995, 117, 5958−5966.
Subsequent cyclization followed by proton elimination is
unlikely to proceed through transiton state 14b as it shows
unfavorable steric interactions. The cyclization is likely to
proceed through transition state 14a leading to cis-product 15a.
The formation of trans-product 15b was not observed.
In summary, we have developed an unprecedented TMSOTf-
catalyzed intermolecular Prins-type cyclization for the synthesis
of a variety of oxocene derivatives. The use of various 1-alkyl-5-
methylhex-5-en-l-ol and an appropriate aromatic aldehyde
afforded a range of oxocene endo-olefin derivatives. A stereo-
chemical model also provided explanation for the selective
formation of 2,8-cis-oxocene derivatives in up to 87% yields and
excellent diastereoselectivity for disubstituted derivatives.
Mechanistic studies and application of these substituted oxocene
derivatives are in progress in our laboratory.
(21) Ullapu, P. R.; Kim, Y. S.; Lee, J. K.; Pae, A. N.; Kim, Y.; Min, S.-J.;
Cho, Y. S. Chem. - Asian J. 2011, 6, 2092−2100.
(23) Booth, G. Nitro Compounds, Aromatic. In Ullmann’s
Encyclopedia of Industrial Chemistry; John Wiley & Sons: New York,
2007.
(24) Single-crystal X-ray analysis was performed in our X-ray
crystallography laboratory by Dr. Phil Fanwick, Department of
Chemistry, Purdue University, West Lafayette, IN.
(25) CCDC 1437986 contains the supplementary crystallographic
data for compound 13. This data can be obtained free of charge from the
(26) Rhee, H. J.; Beom, H. Y.; Kim, H.-D. Tetrahedron Lett. 2004, 45,
8019−8022.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and 1H and 13C NMR spectra for
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support by the National Institutes of Health is
gratefully acknowledged. We thank Dr. Jorden Kass (Purdue
University) for preliminary experimental assistance.
REFERENCES
(1) Majumdar, K. C. RSC Adv. 2011, 1, 1152−1170.
■
D
Org. Lett. XXXX, XXX, XXX−XXX