ppm. [a]25 = 2125° (c = 1.0, DCM). 10a: (Et2O, 298 K) 31P NMR d
D
236.2 ppm. 10b: (CDCl3, 298 K) 31P NMR d 225.4 ppm. [a]25 = 76.4°
D
(c = 1.0, DCM).11a [a]25 = 6.4° (c = 0.5, THF). (+)11b (CDCl3, 298 K)
D
31P NMR d 237.1 ppm. [a]25 = 212° (c = 1.0, DCM).
D
‡ Crystal data: 9a: C27H41O2PRu, M = 529.64, orthorhombic, space group
P212121, a = 9.1310(10), b = 21.5780(10), c = 13.2830(10) Å. U =
2617.1(4) Å3. Z = 4, Dc = 1.344 g cm23, F(000) = 1112. Graphite
monochromated X-ray Mo–Ka radiation, l = 0.71069 Å. m = 0.680 cm21
,
T = 150.0(10) K. Of 7586 independent reflections collected on a Kappa
CCD diffractometer from a pale yellow plate of dimensions 0.24 3 0.20 3
0.17 mm over h = 212 to 12, k = 230 to 22°, l = 218 to 18, 6650 having
I > 2s(I) were refined on F2 using direct methods in Shelxl. wR2 = 0.0918,
R1
33H45O2PRu, M = 605.73, orthorhombic, space group P212121, a =
10.085(5), b = 11.771(5), c = 26.420(5) Å. U = 3136(2) Å3. Z = 4, Dc
= 0.0379, GoF = 1.042, Flack’s parameter = 20.06(2). 10b:
C
Fig. 1 Molecular structure of 9a. Selected bond lengths (Å) Ru(1)–P(1),
2.4142(7); Ru(1)–C(1), 2.212(2); Ru(1)–C(2), 2.199(3); Ru(1)–C(3),
2.192(3); Ru(1)–C(4), 2.188(3); P(1)–C(1), 1.773(3); P(1)–C(4), 1.798(3);
C(1)–C(2), 1.407(4); C(2)–C(3), 1.436(4); C(3)–C(4), 1.438(4); C(4)–C(5),
1.475(4).
=
1.283 g cm23, F(000) = 1272. Graphite monochromated Mo–Ka radiation,
l = 0.71069 Å. m = 0.577 cm21, T = 150.0(10) K. Of 9007 independent
reflections from a pale yellow cube of 0.20 3 0.20 3 0.20 mm collected as
above over h = 214 to 14; k = 216 to 16; l = 237 to 37°, 7400 having
I > 2s(I) were refined on F2 using direct methods in Shelxl. wR2 = 0.0911,
R1 = 0.0399, GoF = 1.039, Flack’s parameter = 20.02(2). CCDC 226405
graphic data in .cif or other electronic format.
1 D. Carmichael and F. Mathey, Top. Curr. Chem., 2002, 220, 27.
2 C. Ganter, L. Brassat and B. Ganter, Tetrahedron Asymmetry, 1997, 8,
2607.
3 R. Shintani and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 10779.
4 G. C. Fu and R. Shintani, Angew. Chem. Int. Ed., 2003, 42, 4082.
5 K. Tanaka and G. C. Fu, J. Org. Chem., 2001, 66, 8177.
6 M. Ogasawara, K. Yoshida and T. Hayashi, Organometallics, 2001, 20,
3913.
7 S. Qiao and G. C. Fu, J. Org. Chem., 1998, 63, 4168.
8 L. Brassat, B. Ganter and C. Ganter, Chem. Eur. J., 1998, 4, 2148; B.
Deschamps, L. Ricard and F. Mathey, J. Organomet.Chem., 1997, 548,
17; R. M. G. Roberts, J. Silver and A. S. Wells, Inorg. Chim. Acta, 1989,
155, 197 see also ref 5.
Fig. 2 Molecular structure of 10b. Selected bond lengths (Å). Ru(1)–P(1),
2.399(1); Ru(1)–C(1), 2.218(3); Ru(1)–C(2), 2.207(3); Ru(1)–C(3),
2.187(3); Ru(1)–C(4), 2.181(3); P(1)–C(1), 1.787(3); P(1)–C(4), 1.784(3);
C(1)–C(2), 1.439(4); C(1)–C(6), 1.484(3); C(2)–C(3), 1.434(3); C(3)–C(4),
1.434(4); C(4)–C(5), 1.478(4).
9 D. Carmichael, L. Ricard and F. Mathey, Chem. Commun., 1994,
1167.
9b and 10b undergoing no detectable decomposition or inter-
conversion in toluene at 110 °C over 1 month) and were obtained in
purities exceeding 99% through a single recrystallisation from
MeOH after multigram separation by chromatography on alumina
(neutral; hexane–dichloromethane 9:1).22 Their absolute configura-
tions were confirmed by X-ray crystallography‡ for 9a and 10b
(Figs. 1 and 2). In each case, reduction with LiAlH4 gave the
desirable13 enantiopure phospharuthenocenemethanol building
blocks 11a,b in near-quantitative yields.
10 C. Burney, D. Carmichael, K. Forissier, J. C. Green, F. Mathey and L.
Ricard, Chem. Eur. J., 2003, 9, 2567.
11 K. Forissier, L. Ricard, D. Carmichael and F. Mathey, Organometallics,
2000, 19, 954.
12 C. Burney, D. Carmichael, K. Forissier, J. C. Green, F. Mathey, L.
Ricard and S. Wendicke, Phosphorus Sulfur Silicon Relat. Elem., 2002,
177, 1999.
13 D. Carmichael, F. Mathey, L. Ricard and N. Seeboth, Chem. Commun.,
2002, 2976.
14 T. Arliguie, M. Ephritikhine, M. Lance and M. Nierlich, J. Organomet.
Chem., 1996, 524, 239.
The phospholide ester methodology described above provides a
simple solution to problems of stability and accessibility of
phosphametallocenes for enantioselection, and allows the prepara-
tion of only the second series of enantiopure planar chiral
phosphametallocene sandwich complexes (after M = Fe). Addi-
tional preliminary results show that such carboxymenthyl-substi-
tuted phospholides may have a much more profound role to play in
the preparation of enantiopure functionalised phosphametallo-
cenes, with reactions of 8b at [MnBr(CO)5] or [Cp*FeCl] centres
again furnishing ring-functionalised phosphaferrocenes and phos-
phacymantrenes whose chirality can be resolved through simple
crystallisation.23 Elaboration of these complexes should facilitate
access to resolved phosphametallocenes and considerably broaden
their availability. A comparison of the behaviour of phosphaferro-
cene and phospharuthenocene ligands will appear in due course.
We thank CNRS and Ecole polytechnique for support. We also
wish to further acknowledge financial support to JK through the
European Community’s Human potential program under the
contract HPRN-CT-2001-00172 (Daccord).
15 For an elegant exception: M. Ogasawara, T. Nagano, K. Yoshida and T.
Hayashi, Organometallics, 2002, 21, 3062.
16 S. Holand, M. Jeanjean and F. Mathey, Angew. Chem., Int. Ed. Engl.,
1997, 36, 98; M. Melaimi, L. Ricard, F. Mathey and P. Le Floch, Org.
Lett., 2002, 4, 1245.
17 Vilsmeier formylation, efficient for phosphaferrocenes, fails with less
electron rich phospholyl complexes, thus making pre-installed function-
ality rather valuable: B. Deschamps, L. Ricard and F. Mathey,
Organometallics, 1999, 18, 5688.
18 For resolutions of other diastereomeric monophosphaferrocenes: see
refs. 2,4 and R. Shintani and G. C. Fu, Org. Lett., 2002, 4, 3699.
Diphosphaferrocenes: A. Klys, R. B. Nazarski and J. Zakrzewski, J.
Organomet. Chem., 2001, 627, 135; A. Klys, J. Zakrzewski, A.
Rybarczyk-Pirek and T. A. Olszak, Tetrahedron Asymmetry, 2001, 12,
533; A. Klys, J. Zakrzewski and L. Jerzykiewicz, Tetrahedron
Asymmetry, 2003, 14, 3343.
19 G. C. Fu, Acc. Chem. Res., 2000, 33, 412.
20 M. Uno, K. Ando, N. Komatsuzaki and T. Takahashi, Chem. Commun.,
1992, 964.
21 T. K. Hollis, Y. J. Ahn and F. S. Tham, Organometallics, 2003, 22,
3062.
22 The chromatographic separation can be omitted, with a moderate yield
reduction. In such cases, both complexes can be obtained by fractional
crystallisation from the mother liquor. 10a was only enriched to 94%
de.
23 Details will be provided elsewhere. For a much longer synthesis of
enantiopure phosphacymantrenes, see ref. 17.
Notes and references
† Selected spectrocopic data: 5a: (THF, 298 K) 31P NMR d 236 ppm. 5b:
(THF, 298 K) 31P NMR d 226 ppm. 8a: (THF, 298 K) 31P NMR d 102 ppm.
8b: (THF, 298 K) 31P NMR d 107 ppm. 9a: (Et2O, 298 K) 31P NMR d 238.6
ppm. [a]25 = 45° (c = 1.0, DCM). 9b: (CDCl3, 298 K) 31P NMR d 228.6
D
C h e m . C o m m u n . , 2 0 0 4 , 1 1 4 4 – 1 1 4 5
1145
Typeset and printed by Black Bear Press Limited, Cambridge, England