9540
J. Am. Chem. Soc. 2000, 122, 9540-9541
Scheme 1. Preparation of (R,R)-cis-3-hexene-2,5-d2 from
(S)-(-)-Ethyl Lactate
Stereochemistry of the Triazollinedione-Alkene Ene
Reaction: A Stereospecific Suprafacial
Transformation
Georgios Vassilikogiannakis, Yiannis Elemes,† and
Michael Orfanopoulos*
Department of Chemistry, UniVersity of Crete
71409 Iraklion, Crete, Greece
ReceiVed April 5, 2000
ReVised Manuscript ReceiVed June 29, 2000
Triazolinedione (RTAD, R ) methyl or phenyl), one of the
most reactive electrophiles,1 reacts with conjugated dienes to give
Diels-Alder products2-4 and with olefins to produce ene or [2+2]
adducts.4-6 The ene reaction has attracted considerable mechanis-
tic5-12 and theoretical attention.13,14 Most of the experimental
studies5-12 and to a lesser extent computational work13 support a
stepwise mechanism with formation of an aziridinium imide, AI,
intermediate in the rate determinig step. AI intermediates also
have been observed spectroscopically and reported independently
by a number of investigators.15-17
Scheme 2. PTAD Ene Addition to Olefin 1
The stereoselectivity of this synthetically useful transforma-
tion18-21 has received conciderable attention. For example, RTAD
adds to various alkenes and shows a number of regioselectivi-
ties5,7,22,23 depending on the double bond substitution. It also adds
to allylic alcohols showing a remarkable diastereoselectivity,12,24,25
and to allyl silanes affording cis ene products.26
In this paper we report the stereochemistry of this reaction with
simple alkenes and discuss mechanistic possibilities in the light
of the present results. This stereochemistry has not been previously
† Permanent address: Department of Chemistry, University of Ioannina,
45110 Ioannina, Greece.
(1) Moody, C. J. AdV. Heterocycl. Chem. 1982, 30, 1 and references therein.
(2) Jensen, F.; Foote, C. S. J. Am. Chem. Soc. 1987, 109, 6376-6385.
(3) Chen, S. C.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998, 120,
12303-12309.
recognized and may hold important implications for the mech-
anism of this reaction.
(4) Clennan, E. L.; Earlywine, A. D. J. Am. Chem. Soc. 1987, 109, 7104-
7110.
The optically active, by virtue of deuterium substitution, and
isomerically pure olefin, (R,R)-cis-3-hexene-2,5-d2 (1), is well
suited to test the stereochemical requirements of this classical
ene reaction. This olefin has three distinctive characteristics: (a)
asymmetry at the two reactive allylic carbons C2 and C2′, by virtue
of stereospecific deuteration, (b) distinguishable groups at both
ends of the double bond such that the ene adducts will contain a
new stereogenic center, and (c) a C2 symmetry axis such that the
two faces of the double bond are equally accessible.
(5) Cheng, C. C.; Seymour, C. A.; Petti, M. A.; Greene, F. D.; Blount, J.
F. J. J. Org. Chem. 1984, 49, 2910-2916.
(6) Orfanopoulos, M.; Smonou, I.; Foote, C. S. J. Am. Chem. Soc. 1990,
112, 3607-3614.
(7) Orfanopoulos, M.; Stratakis, M.; Elemes, Y.; Jensen, F. J. Am. Chem.
Soc. 1991, 113, 3180-3181
(8) Elemes, Y.; Foote, C. S. J. Am. Chem. Soc. 1992, 114, 6044-6050.
(9) Clennan, E. L.; Koola, J. J. J. Am. Chem. Soc. 1993, 115, 3802-3803.
(10) Smonou, I.; Khan, S.; Foote, C. S.; Elemes, Y.; Mavridis, I. M.;
Pantidou, A.; Orfanopoulos, M. J. Am. Chem. Soc. 1995, 117, 7081-7087.
(11) Stratakis, M.; Orfanopoulos, M.; Foote, C. S. J. Org. Chem. 1998,
63, 1315-1318.
(12) Vassilikogiannakis, G.; Stratakis, M.; Orfanopoulos, M.; Foote C. S.
J. Org. Chem. 1999, 64, 4130-4139.
(13) Chen, J. S.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1997, 119,
9852-9855.
(14) Singleton, D. A.; Hang, C. J. Am. Chem. Soc. 1999, 121, 11885-
11893.
(15) . Poon, T. H. W.; Park, S.; Elemes, Y.; Foote, C. S. J. Am. Chem.
Soc. 1995, 117, 10468-10473.
(16) Squillacote, M.; Mooney, M.; De Felipis, J. J. Am. Chem. Soc. 1990,
112, 5364-5365.
The preparation27 of (R,R)-cis-3-hexene-2,5-d2 (1) from (S)-
(-)-ethyl lactate is shown in Scheme 1. The reaction of this olefin
with PTAD at -40 °C in dicloromethane quantitatively gave
product 2 with only the trans stereochemistry. For convenience,
we present here mechanistic possibilities considering only one
of the two equivalent faces of the double bond. Approach of
PTAD from the top face would abstract H and form an S
stereogenic center, whereas abstraction of D would form the R
stereogenic center (Scheme 2). We define the new stereogenic
(17) Nelsen, S. F.; Kapp, D. L. J. Am. Chem. Soc. 1985, 107, 5548-5549.
(18) Gau, A. H.; Lin, G. L.; Uang, B. J.; Liao, F. L.; Wang, S. L. J. Org.
Chem. 1999, 64, 2194-2201 and references therein.
(19) Corey, E. J.; Snider, B. B. Tetrahedron Lett. 1973, 3091-3094
(20) Breslow, R.; Corcoran, R. J.; Snider, B. B.; Doll, R. J.; Khanna, P.
L.; Kaleya, R. J. Am. Chem. Soc. 1977, 99, 905-915.
(21) Adam, W.; Pastor, A.; Wirth, T. Org. Lett. 2000, 2, 1295-1297.
(22) Elemes, Y.; Stratakis, M.; Orfanopoulos, M. Tetrahedron Lett. 1997,
38, 6437-6440.
(23) Orfanopoulos, M.; Elemes, Y.; Stratakis, M. Tetrahedron Lett. 1990,
31, 5775-5778.
(24) Prein, M.; Adam, W. Angew. Chem., Int. Ed. Engl. 1996, 35, 477-
494 and references therein.
(27) The synthesis proceeds through the key intermediate 1-propanol-2-
d1, a compound whose chirooptical properties have been well documented:
Green, M. M.; Moldowan, J. M.; McGrew, J. G., II J. Org. Chem. 1974, 39,
2166-2171
(25) Stratakis. M.; Vassilikogiannakis, G.; Orfanopoulos. M. Tetrahedron
Lett. 1998, 39, 2393-2396.
(26) Adam, W.; Schwarm, M. J. Org. Chem. 1988, 53, 3129-3130.
10.1021/ja001190g CCC: $19.00 © 2000 American Chemical Society
Published on Web 09/16/2000