7718
J. Am. Chem. Soc. 1999, 121, 7718-7719
Scheme 1
Kinetic Resolution of Racemic Cyclic Olefins via
Chiral Dioxirane
Michael Frohn,† Xiaoming Zhou,† Jian-Rong Zhang,†
Yong Tang, and Yian Shi*
Department of Chemistry, Colorado State UniVersity
Fort Collins, Colorado 80523
Scheme 2
ReceiVed August 21, 1998
Chiral dioxiranes have been shown to be effective reagents
for asymmetric epoxidation of olefins.1,2 Recently we reported a
highly enantioselective epoxidation method for trans- and trisub-
stituted olefins using a fructose-derived ketone 1 as catalyst and
Oxone as oxidant.3 The epoxidation has been shown to proceed
primarily through a well ordered spiro transition state A (Scheme
1).3b Since dioxiranes are expected to be sensitive to sterics, an
existing chiral center adjacent to the double bond provides the
possibility for kinetic resolution.4 Herein we wish to report our
preliminary studies in this area.
Scheme 3
Our initial studies have been focused on cyclic olefins with
the chiral center at the allylic position. The rigid conformation
and proximity of the chiral center to the olefin make them
promising candidates for kinetic resolution. Therefore, we began
the study with 1,6-disubstituted cyclohexenes (3) (Scheme 2).
Transition states B and C represent the spiro transition states for
the epoxidation of each enantiomer. Transition state C is expected
to be disfavored compared to transition state B due to the steric
interaction between R2 and one of the dioxirane oxygens.
Consequently one enantiomer would be epoxidized faster than
the other.
Scheme 4
* Corresponding author. Phone: 970-491-7424. Fax: 970-491-1801.
Email: yian@lamar.colostate.edu.
† M. F., X. Z., and J.R.Z. contributed equally to this work.
(1) For general leading references on dioxiranes see: (a) Murray, R. W.
Chem. ReV. 1989, 89, 1187. (b) Adam, W.; Curci, R.; Edwards, J. O. Acc.
Chem. Res. 1989, 22, 205. (c) Curci, R.; Dinoi, A.; Rubino, M. F. Pure Appl.
Chem. 1995, 67, 811. (d) Clennan, E. L. Trends Org. Chem. 1995, 5, 231. (e)
Adam, W.; Smerz, A. K. Bull. Soc. Chim. Belg. 1996, 105, 581.
(2) For leading references on asymmetric epoxidation mediated by chiral
ketones see: (a) Curci, R.; Fiorentino, M.; Serio, M. R. J. Chem. Soc., Chem.
Commun. 1984, 155. (b) Curci, R.; D’Accolti, L.; Fiorentino, M.; Rosa, A.
Tetrahedron Lett. 1995, 36, 5831. (c) Brown, D. S.; Marples, B. A.; Smith,
P.; Walton, L Tetrahedron 1995, 51, 3587. (d) Denmark, S. E.; Forbes, D.
C.; Hays, D. S.; DePue, J. S.; Wilde, R. G. J. Org. Chem. 1995, 60, 1391. (e)
Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M. K.; Zheng, J. H.; Cheung, K.
K. J. Am. Chem. Soc. 1996, 118, 491. (f) Yang, D.; Wang, X.-C.; Wong,
M.-K.; Yip, Y.-C.; Tang, M.-W. J. Am. Chem. Soc. 1996, 118, 11311. (g)
Song, C. E.; Kim, Y. H.; Lee, K. C.; Lee, S. G.; Jin, B. W. Tetrahedron:
Asymmetry 1997, 8, 2921. (h) Adam, W.; Zhao, C.-G. Tetrahedron: Asym-
metry 1997, 8, 3995. (i) Denmark, S. E.; Wu, Z.; Crudden, C. M.; Matsuhashi,
H. J. Org. Chem. 1997, 62, 8288. (j) Bergbreiter, D. E. Chemtracts: Org.
Chem. 1997, 10, 661. (k) Armstrong, A.; Hayter, B. R. Chem. Commun. 1998,
621. (l) Dakin, L. A.; Panek, J. S. Chemtracts: Org. Chem. 1998, 11, 531.
(m) Yang, D.; Wong, M.-K.; Yip, Y.-C.; Wang, X.-C.; Tang, M.-W.; Zheng,
J.-H.; Cheung, K.-K. J. Am. Chem. Soc. 1998, 120, 5943.
Scheme 5
To test this hypothesis, we used (()-1-phenyl-6-(trimethyl-
siloxy)cyclohexene (4) as our initial substrate. When the epoxi-
dation was carried out with 35% ketone 1 at -10 °C for 2.5 h, a
49% conversion was obtained as judged by H NMR assay of
1
1
the crude reaction mixture (Scheme 3). The H NMR spectra
showed that the trans epoxide was formed predominantly (trans/
cis > 20:1).5 Analysis of the unreacted substrate using HPLC on
a chiral support (Chiralcel OD) showed a 96% ee. The fact that
the major epoxide product was trans and the recovered olefin
was enriched in the S isomer supports the above transition state
analysis.
(3) (a) Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806.
(b) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc.
1997, 119, 11224. (c) Frohn, M.; Dalkiewicz, M.; Tu, Y.; Wang, Z.-X.; Shi,
Y. J. Org. Chem. 1998, 63, 2948. (d) Wang, Z.-X.; Shi, Y. J. Org. Chem.
1998, 63, 3099. (e) Cao, G.-A.; Wang, Z.-X.; Tu, Y.; Shi, Y. Tetrahedron
Lett. 1998, 39, 4425. (f) Zhu, Y.; Tu, Y.; Yu, H.; Shi, Y. Tetrahedron Lett.
1998, 39, 7819. (g) Tu, Y.; Wang, Z.-X.; Frohn, M.; He, M.; Yu, H.; Tang,
Y.; Shi, Y. J. Org. Chem. 1998, 63, 8475.
(4) Many excellent kinetic resolution methods have been developed. For
leading references on kinetic resolution by asymmetric epoxidation see: (a)
Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless,
K. B. J. Am. Chem. Soc. 1981, 103, 6237. (b) Johnson, R. A.; Sharpless, K.
B. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993;
Chapter 4.1. (c) Vander Velde, S. L.; Jacobsen, E. N. J. Org. Chem. 1995,
60, 5380. (d) Noguchi, Y.; Irie, R.; Fukuda, T.; Katsuki, T. Tetrahedron Lett.
1996, 37, 4533.
(5) The trans configuration of the major isomer was assigned on the basis
of the following comparison: Epoxide 5 was desilylated with TBAF. The 1H
NMR analysis showed that the resulting epoxy alcohol matched the minor
isomer (trans epoxide) of the epoxidation products of 2-phenyl-2-cyclohexenol
with m-CPBA. It is known that the epoxidation of an allylic alcohol with
m-CPBA gives the cis epoxide as a major product due to the directing effect
of the hydroxy group. For a leading reference on this subject see: Hoveyda,
A. H.; Evans, D. A.; Fu, G. C. Chem. ReV. 1993, 93, 1307.
10.1021/ja9830039 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/06/1999