Paper
Dalton Transactions
metals by the phenoxide oxygen atoms while the methoxy
groups help to stabilize the coordination sphere of these
metals. When moving from Li to Na and K this aryloxide frag-
ment does not change substantially the spectroscopic data or
its structural parameters, only the dihedral angles between the
central AlO2 core and the phenyl rings modify to accommodate
to the different alkali ions sizes. Preliminary polymerization
studies indicate that the aluminium lithium species
[AlLiMe2{2,6-(MeO)2C6H3O}2]2 are active in L-lactide ROP,
giving polymers with narrower polydispersities than the homo-
metallic counterpart 2.
H. Yamaguchi, T. Kanzawa and T. Hirano, Polym. Bull.,
2000, 45, 97; T. A. Zevaco, J. K. Sypien, A. Janssen,
O. Walter and E. Dinjus, J. Organomet. Chem., 2007, 692,
1963; T. A. Zevaco, J. Sypien, A. Janssen, O. Walter and
E. Dinjus, Catal. Today, 2006, 115, 151.
9 M. Normand, T. Roisnel, J.-F. Carpentier and E. Kirillov,
Chem. Commun., 2013, 49, 11692; O. Dechy-Cabaret,
B. Martin-Vaca and D. Bourissou, Chem. Rev., 2004, 104,
6147; N. Spassky, M. Wisniewski, C. Pluta and A. Le
Borgne, Macromol. Chem. Phys., 1996, 197, 2627;
D. Commereuc, H. Olivier-Bourbigou, V. Kruger-Tissot and
L. Saussine, J. Mol. Catal. A: Chem., 2002, 186, 215–222;
M. O. Miranda, Y. DePorre, H. Vazquez-Lima,
M. A. Johnson, D. J. Marell, C. J. Cramer and W. B. Tolman,
Inorg. Chem., 2013, 52, 13692.
Acknowledgements
Financial support from Factoría de Cristalización-Consolider-
Ingenio (CSD2006-00015) and the Universidad de Alcalá
(CCG2013/EXP-061) are gratefully acknowledged. M. T. M.
thanks the Universidad de Alcalá for a research fellowship.
The authors thank Prof. Francisco Mendicuti and Thais
Carmona for the CD measurements.
10 S. Dagorne and C. Fliedel, Top. Organomet. Chem., 2013, 41,
125; S. Milione, F. Grisi, R. Centore and A. Tuzi, Organo-
metallics, 2006, 25, 266–274; A. D. Schwarz, Z. Chu and
P. Mountford, Organometallics, 2010, 29, 1246–1260;
M. H. Chisholm, C.-C. Lin, J. C. Gallucci and B.-T. Ko,
Dalton Trans., 2003, 406; M. Bouyahyi, T. Roisnel and
J.-Fr. Carpentier, Organometallics, 2010, 29, 491;
B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, Dalton
Trans., 2001, 2215; A. Kowalski, A. Duda and S. Penczek,
Macromolecules, 1998, 31, 2114; P. Hormnirun,
E. L. Marshall, V. C. Gibson, A. J. P. White and
D. J. Williams, J. Am. Chem. Soc., 2004, 126, 2688; J. Liu,
N. Iwasa and K. Nomura, Dalton Trans., 2008, 3978;
S. Dagorne, F. Le Bideau, R. Welter, S. Bellemin-Laponnaz
and A. Maisse-François, Chem. – Eur J., 2007, 13, 3202;
C. Zhang and Z.-X. Wang, J. Organomet. Chem., 2008, 693,
3151.
Notes and references
1 T. Taguchi and H. Yanai, Al(III) Lewis acids, in Acid catalysis
in modern organic synthesis, ed. H. Yamamoto and
K. Ishihara, Wiley, Weinheim, 2008; S. Woodward and
S. Dagorne, Modern Organoaluminum Reagents, Springer,
2012; H. Naka, M. Uchiyama, Y. Matsumoto,
A. E. H. Wheatley, M. McPartlin, J. V. Morey and Y. Kondo,
J. Am. Chem. Soc., 2007, 129, 1921; H. Noth, A. Schlegel and
M. Suter, J. Organomet. Chem., 2001, 621, 231; S. Saito and 11 Y. Naganawa and K. Maruoka, Top. Organomet. Chem.,
H. Yamamoto, Chem. Commun., 1997, 1585. 2013, 41, 187.
2 J. Ternel, F. Agbossou-Niedercorn and R. M. Gauvin, Dalton 12 F. Mongin and A. Harrison-Marchand, Chem. Rev., 2013,
Trans., 2014, 43, 4530; P. von Zezschwitz, Synthesis, 2008,
1809; Z. Elkhayat, I. Safir, M. Dakir and S. Arseniyadis,
Tetrahedron: Asymmetry, 2007, 18, 1589.
113, 7563; D. J. Linton, P. Schooler and A. E. H. Wheatley,
Coord. Chem. Rev., 2001, 223, 53; R. E. Mulvey,
D. R. Amstrong, B. Conway, E. Crosbie, A. R. Kennedy and
S. D. Robertson, Inorg. Chem., 2011, 50, 12241.
3 S. Baba and E.-I. Negishi, J. Am. Chem. Soc., 1976, 98, 6729;
E.-i. Negishi and S. Baba, J. Chem. Soc., Chem. Commun., 13 R. E. Mulvey, Dalton Trans., 2013, 42, 6676; S. K. Mandal
1976, 596.
and H. W. Roesky, Acc. Chem. Res., 2010, 43, 248;
R. E. Mulvey, Organometallics, 2006, 25, 1060.
4 U. M. Dezhemilev and V. A. D’yakonov, Top. Organomet.
Chem., 2013, 41, 215; T. Miyoshi, S. Matsuya, M. Tsugawa, 14 F. Soki, J.-M. Neudorfl and B. Goldfuss, J. Organomet.
S. I. Sato, M. Ueda and O. Miyata, Org. Lett., 2013, 15, 3374.
5 O. Pamiés and M. Dieguez, Top. Organomet. Chem., 2013,
41, 277.
6 S. S. Kumar and H. W. Roesky, Dalton Trans., 2004, 3927;
P. von Zezschwitz, Synthesis, 2008, 1809; W. Uhl, Coord.
Chem., 2008, 693, 2139; W. Clegg, E. Lamb, S. T. Liddle,
R. Snaith and A. E. H. Wheatley, J. Organomet. Chem., 1999,
573, 305; R. E. Mulvey, Acc. Chem. Res., 2009, 42, 743;
H. R. Simmonds and D. S. Wright, Chem. Commun., 2012,
48, 8617.
Chem. Rev., 2008, 252, 1540; J. P. Campbell and 15 J. García-Alvarez, E. Hevia, A. R. Kennedy, J. Klett and
W. L. Gladfelter, Inorg. Chem., 1997, 36, 4094.
7 E. Y. X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391;
H. Sinn and W. Kaminsky, Adv. Organomet. Chem., 1980,
R. E. Mulvey, Chem. Commun., 2007, 2402; R. E. Mulvey,
F. Mongin, M. Uchiyama and Y. Kondo, Angew. Chem., Int.
Ed., 2007, 46, 3802.
18, 99; H. W. Roesky, M. G. Walawalkar and R. Murugavel, 16 X. Pan, A. Liu, L. Yao, L. Wang, J. Zhang, J. Wu, X. Zhao
Acc. Chem. Res., 2001, 34, 201.
8 M. Miyamoto, Y. Saeki, H. Maeda and Y. Kimura, J. Polym.
Sci., Part A: Polym. Chem., 1999, 37, 435; T. Kitayama,
and C.-C. Lin, Inorg. Chem. Commun., 2011, 14, 763;
L. Wang, J. Zhang, L. Yao, N. Tang and J. Wu, Inorg. Chem.
Commun., 2011, 14, 859; C. Decu, C. Casey, M. C. Case and
14384 | Dalton Trans., 2014, 43, 14377–14385
This journal is © The Royal Society of Chemistry 2014