PHOTOCHEMICAL GENERATION OF THIOPHENE ANALOGS OF 9-FLUORENYL CATIONS
5.51 (s, 1 H), 3.28 (s, 3 H).; 13C-NMR d 147.7, 146.2, 145.9, 137.1,
129.1, 127.3, 126.5, 120.7, 119.8, 112.7, 77.1, 53.6; MS (GC/MS) m/z
202.1 (Mþ, 79), 187 (60) 171 (80), 115 (35). Anal. Calc. for
C12H10OS: C, 71.29; H, 4.95. Found: C, 71.51; H, 4.72.
[3] A. Allen, T. T. Tidwell, Chem. Rev. 2001, 101, 1333–1348.
[4] S. L. Mecklenburg, E. F. Hilinski, J. Am. Chem. Soc. 1989, 111,
5471–5472.
[5] R. A. McClelland, N. Mathivanan, S. Steenken, J. Am. Chem. Soc. 1990,
112, 4857–4861.
[6] T. Amyes, M. Richard, M. Novak, J. Am. Chem. Soc. 1992, 114,
8032–8041.
[7] H. Jia, Pv. R. Schleyer, Y. Mo, M. A. McAllister, T. T. Tidwell, J. Am. Chem.
Soc. 1997, 119, 7075–7083.
[8] C. F. Rodriquez, D. L. Vukovic, A. C. Hopkinson, J. Mol. Struct.
(THEOCHEM) 1996, 363, 131–138.
[9] A. R. Katritzky, M. Karelson, S. Sild, T. M. Krygowski, K. Jug, J. Org.
Chem. 1998, 63, 5228–5231.
[10] S. G. Lias, J. F. Liebman, R. D. Levin, J. Phys. Chem. Ref. Data 1984, 13,
695–808.
[11] Hark. Richard, R Hauze. Diane, B Petrovskaia. Olga, Joullie. Madeleine,
M Tetrahedron Lett. 1994, 35(42), 7719–7722.
4-Methoxy-4H-Indeno[1,2-b]thiophene (20)
This isomer was prepared by using the same procedure as that for
16 except that 4H-indeno[1,2-b]thiophene (13) was used as the
starting material. 1H NMR d 7.54 (d, 1H, J ¼ 7.4 Hz), 7.26–7.19 (m,
2H), 5.42 (s, 1H), 3.22 (s, 3H); 13C-NMR d 147.4, 145.7, 144.8, 137.7,
129.0, 127.8, 125.9, 125.2, 123.1, 119.0, 78.7, 53.3; MS (GC/MS) m/z
202.1 (Mþ, 91), 187 (95), 171 (100), 115 (38). HRMS calc. for
C12H10OS (M) 202.0452, found 202.0454.
[12] P. Wan, E. Krogh, J. Am. Chem. Soc. 1989, 111, 4887–4895.
[13] R. A. McClelland, F. L. Cozens, J. Li, S. Steenken, J. Chem. Soc., Perkin
Trans. 2: Phys. Org. Chem. 1996, 1531–1543.
[14] F. Cozens, J. Li, R. A. McClelland, S. Steenken, Angew. Chem. 1992,
104, 753–755 (See also Angew. Chem., Int. Ed. Engl., 1992, 31,
743-5).
[15] Pv. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. Rv. E. Hommes, J.
Am. Chem. Soc. 1996, 118, 6317.
[16] S. Patchkovskii, W. Thiel, J. Mol. Model. 2000, 6, 67 and references
cited
[17] D. Sawicka, S. Wilsey, K. N. Houk, J. Am. Chem. Soc. 1999, 121, 864
[18] M. Buhl, Chem. Eur. J. 1998, 4, 734.
[19] A. R. Lera, R. Alvarez, B. Lecea, A. Torrado, F. P. Cossio, Angew. Chem.,
Int. Ed. 2001, 40, 557
[20] S. P. Verevkin, H.-D. Beckhaus, C. Ruckhardt, R. Haag, S. I. Kozhushkov,
T. Zywietz, A. deMeijere, H. Jiao, P. v. R. Schleyer, J. Am. Chem. Soc.
1998, 120, 11130.
[21] G. G. Gurzadyan, S. Steenken, Chem. Eur. J. 2001, 7, 1808–1815.
[22] L. Zhang, G. D. Mendenhall, J. Photochem. Photobiol. A: Chem. 1997,
107, 169.
[23] J. P. Richard, M. E. Rothenburg, W. Jencks, J. Am. Chem. Soc. 1984, 106,
1361.
[24] R. A. McClelland, V. M. Kanagasabapathy, N. Banait, S. Steenken, J. Am.
Chem. Soc. 1988, 110, 6913.
[25] F. L. Cozens, N. Mathivanan, R. A. McClelland, S. Steenken, J. Chem.
Soc. Perkin Trans. 2, 1992, 2083.
[26] J. R. Gandler, J. Am. Chem. Soc. 1985, 107, 8218.
[27] R. Ta-Shma, W. P. Jencks, J. Am. Chem. Soc. 1986, 108, 8040.
[28] W. C. Herndon, N. S. Mills, J. Org. Chem. 2005, 70, 8492–88496.
[29] S. Pogodin, I. Agranat, J. Org. Chem. 2007, 72, 10096–10107.
[30] N. M. Chaignon, I. J. S. Fairlamb, A. R. Kapdi, R. J. K. Taylor, A. C.
Whitwood, J. Mol. Catal. A 2004, 219, 191–1199.
[31] D. W. H. MacDowell, T. B. Patrick, J. Org. Chem. 1967, 32, 2441–2445.
[32] C. L. Arcus, G. C. Barrett, J. Chem. Soc. 1960, 2098–2102.
[33] F. Sieber, P. Wentworth, K. Janda, J. Comb. Chem. 1999, 1,
540–546.
Laser flash photolysis
Nanosecond laser flash photolysis experiments employed the
pulses (248 nm; ca. 20 ns; ca. 100 mJ) from a Lambda-Physik
Compex 120 excimer laser filled with F2/Kr/He mixtures, and a
Luzchem Research mLFP-111 laser flash photolysis system,
modified as described previously.[35] Solutions were prepared
at concentrations such that the absorbance at the excitation
wavelength was between ca. 0.7 and 0.9. For transient spectra,
solutions were flowed continuously through a thermostatted
7 ꢀ 7 mm Suprasil flow cell connected to a calibrated 100mL
reservoir, fitted with a glass frit to allow bubbling of argon gas
through the solution. A MasterflexTM 77390 peristaltic pump fitted
with Teflon tubing (Cole-Parmer Instrument Co.) was used to pump
the solution from the reservoir through the sample cell at cont-
rolled rates. Solution temperatures were measured with a Teflon-
coated copper/constantan thermocouple inserted into the thermo-
stated sample compartment in close proximity to the sample cell.
Quenching experiments were carried out in 7 ꢀ 7 mm Suprasil
cells, which were replaced regularly throughout each experiment
with fresh solution in order to maintain adequate transient
signals. Appropriate amounts of MeOH were added by microlitre
syringe, as the neat liquid in the cases of 2–4 or as a standard
solution in HFIP in the case of 2-fluorenol. Transient decay
constants were calculated from traces recorded at or near the
absorption maxima using the manufacturer’s software, or by
non-linear least squares analysis of the absorbance-time profiles
using the Prism 5.0 software package (GraphPad Software, Inc.)
and the appropriate user-defined fitting equations, after
importing the raw data from the Luzchem mLFP software. Rate
constants were calculated by linear or non-linear least-squares
analysis of decay rate-concentration data (at least 7 points) that
spanned as large a range in transient decay rate as practically
possible. Errors are quoted as twice the standard deviation
obtained from the least-squares analyses.
[34] D. W. H. MacDowell, A. T. Jeffries, J. Org. Chem. 1970, 35,
2441–2445.
[35] W. J. Leigh, C. R. Harrington, I. Vargas-Baca, J. Am. Chem. Soc. 2004,
126, 16105.
[36] Gaussian 2003: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. M. Millam, S. S. Lyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.
D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al_Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision
B.05; Gaussian,Inc.: Pittsburgh, PA, (2003).
Theoretical Calculations
**
Calculations were carried out at the B3LYP/6-311 þ G //B3LYP/
6-311 þ G level using GAUSSIAN 2003.[36] The energies were
**
corrected using calculated zero-point vibrational energies.
REFERENCES
[1] R. Breslow, Chem. Eng. News 1965, June 28, 90–99.
[2] R. Breslow, Acc. Chem. Res. 1973, 6, 393–398.
J. Phys. Org. Chem. 2010, 23 1202–1213
Copyright ß 2010 John Wiley & Sons, Ltd.
View this article online at wileyonlinelibrary.com