Asym m etr ic Hyd r ogen a tion of o-Alk oxy-Su bstitu ted Ar ylen a m id es
J ulie Cong-Dung Le and Brian L. Pagenkopf*
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712
pagenkopf@mail.utexas.edu
Received February 16, 2004
A series of (2-alkoxyaryl)glycinols have been prepared in up to 97.8% ee by asymmetric
hydrogenation with cationic rhodium Me-BPE or Me-DuPhos complexes. Others have shown that
the presence of ortho substituents on related R-arylenamides causes a decrease in enantioselectivity.
However, in this study it was found that o-alkoxy R-arylenamides were reduced with high
enantioselectivity irrespective of substituent size.
The value of â-amino alcohols as chiral ligands in
asymmetric catalysis,1 as resolving agents in asymmetric
synthesis,2 and as building blocks of many important
biologically active compounds3 is well-documented. As a
consequence, the development of efficient synthetic meth-
ods for the preparation of these compounds in optically
pure form is of considerable interest. Recently, we
required a scaleable and efficient route to a family of
optically active (2-hydroxyphenyl)glycinols and (2-alkoxy-
phenyl)glycinols. Such amino alcohols can in principle be
obtained by several methods, including asymmetric ami-
nohydroxylation of styrenes4 or reduction of the corre-
sponding R-amino acids or esters.5 The development of
synthetic strategies for accessing arylglycines has been
spurred in part by interest in vancomycin antibiotics, and
noteworthy approaches include cuprate or Friedel-Crafts
coupling to bromoglycinates,6 amination (or the equiva-
lent) of R-aryl enolates,7 and TiCl4-promoted Friedel-
Crafts reaction of phenols with chiral N,O-hemiacetals.8
Given the commercial unavailability of starting materials
or the need for chiral auxiliaries by these methods, we
sought to access the desired amino alcohols by asym-
metric hydrogenation.
Recently, Zhang and co-workers reported a practical
and highly enantioselective synthesis of â-amino alcohols
by rhodium-catalyzed asymmetric hydrogenation of
R-arylenamides with a MOM-protected â-hydroxy group.9
Despite the ostensible utility of that published procedure,
we are unaware of its application to the asymmetric
hydrogenation of arylenamides bearing o-hydroxy or
o-alkoxy substituents. Herein, we wish to report a highly
enantioselective asymmetric hydrogenation of new aryl
o-alkoxy-substituted enamides catalyzed by a cationic
rhodium Me-DuPhos or Me-BPE catalyst system (Scheme
1).10,11
Arylenamides bearing o-hydroxy substituents can be
prepared in gram quantities from readily available of
o-hydroxyacetophenone derivatives by adoption of the
protocols described independently by the groups of Zhang9a
and Burk12 (Scheme 2). Protection of the phenol 1a -k
(K2CO3, acetone, alkyl halide) and R-ketone oxidation
(1) (a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833-856. (b)
Butsugan, Y.; Ariki, S.; Watanabe, M. Ferrocenes; VCH: Weinheim,
Germany, 1995; pp 143-169. (c) Takehara, J .; Hashiguichi, S.; Fujii,
A.; Inoue, S.-i.; Ikariya, T.; Noyori, R. Chem. Commun. 1996, 233-
234. (d) Peper, V.; Martens, J . Chem Ber. 1996, 129, 691-695.
(2) (a) Sawayama, T.; Tsukamoto, M.; Sasagawa, T.; Naruto, S.;
Matsumoto, J .; Uno, H. Chem. Pharm. Bull. 1989, 37, 1382-1383. (b)
Kawai, M.; Omori, Y.; Yamamura, H.; Butsugan, Y. Tetrahedron:
Asymmetry 1992, 3, 1019-1020.
(3) (a) Roemer, D.; Buescher, H. H.; Hill, R. C.; Pless, J .; Bauer, W.;
Cardinaux, F.; Closse, A.; Hauser, D.; Huguenin, R. Nature 1977, 268,
547-549. (b) TenBrink, R. E. J . Org. Chem. 1987, 52, 418-422. (c)
Fincham, C. I.; Higginbottom, M.; Hill, D. R.; Horwell, D. C.; O’Toole,
J . C.; Ratcliffe, G. S.; Rees, D. C.; Robert, E. J . Med. Chem. 1992, 35,
1472-1474. (d) Wu, S. Y.; Takeya, R.; Eto, M.; Tomizawa, C. J . Pestic.
Sci. 1987, 12, 221-227.
(7) (a) Evans, D. A.; Evrard, D. A.; Rychnovsky, S. D.; Fru¨h, T.;
Whittingham, W. G.; DeVries, K. M. Tetrahedron Lett. 1992, 33, 1189-
1192. (b) Evans, D. A.; Nelson, S. G. J . Am. Chem. Soc. 1997, 119,
6452-6453. (c) Vicario, J . L.; Bad´ıa, D.; Dominguez, E.; Crespo, A.;
Carrillo, L.; Anakabe, E. Tetrahedron Lett. 1999, 40, 7123-7126.
(8) Ge, C.-S.; Chen, Y.-J .; Wang, D. Synlett 2002, 37-42.
(9) (a) Zhu, G.; Casalnuovo, A. L.; Zhang, X. J . Org. Chem. 1998,
63, 8100-8101. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029-
3069.
(10) Abbreviations: BICP, 2,2-bis(diphenylphosphino)-1,1-dicyclo-
pentane; BPE, 1,2-bis(2,5-dimethylphospholano)ethane; TangPhos,
1,1′-di-tert-butyl-[2,2′]-diphospholanyl; DuPhos, 1,2-bis(2,5-dialkylphos-
pholane)benzene; Butiphane, 2,3-bis(2,5-diethylphospholan-1-yl)benzo-
[b]thiophene; DIOP, 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphe-
nylphosphino)butane; Walphos, 1-[2-(2′-diphenylphosphinophenyl)ferro-
cenyl]ethyldi(bis-3,5-trifluoromethylphenyl)phosphine; J osiphos, 1-[(2-
dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine; Tania-
phos, 1-diphenylphosphino-2-[R-(N,N-dimethylamino)-o-(diphenylphos-
phinohenyl)methyl]ferrocene; Mandyphos, 2,2′-bis(R-N,N-dimethyl-
aminophenylmethyl)-1,1′-bis(dicyclohexylphosphino)ferrocene.
(11) For the syntheses of these complexes see: Burk, M. J .; Feaster,
J . E.; Nugent, W. A.; Harlow, R. L. J . Am. Chem. Soc. 1993, 115,
10125-10138.
(4) (a) O’Brien, P.; Osborne, S. A.; Parker, D. D. J . Chem. Soc.,
Perkin Trans. 1 1998, 2519-2526. (b) Li, G.; Chang, H.-T.; Sharpless,
K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451-454. (c) Rudolph,
J .; Sennhenn, P. C.; Vlaar, C. P.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2810-2813. (d) Rubin, A. E.; Sharpless, K. B.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2637-2640.
(5) (a) Gage, J . R.; Evans, D. A. Org. Synth. 1990, 68, 77-82. (b)
Abiko, A.; Masamune, S. Tetrahedron Lett. 1992, 33, 5517-5518. (c)
McKennon, M. J .; Meyers, A. I.; Drauz, K.; Schwarm, M. J . Org. Chem.
1993, 58, 3568-3571. (d) Nicola´s, E.; Rusell, K. C.; Hruby, V. J . J .
Org. Chem. 1993, 58, 766-770.
(6) Williams, R. M.; Hendrix, J . A. J . Org. Chem. 1990, 55, 3723-
3728.
10.1021/jo049723h CCC: $27.50 © 2004 American Chemical Society
Published on Web 05/14/2004
J . Org. Chem. 2004, 69, 4177-4180
4177