2140
K. Yoshikawa et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2133–2140
Sunnyvale, CA, USA) at room temperature, and the reaction velocity (OD/
min) was obtained. Anti-fXa activity (inhibition %) was calculated as follows:
Anti-fXa activity = {1 À [(OD/min) of sample/(OD/min) of control]} Â 100. The
IC50 value was obtained by plotting the inhibitor concentration against the
anti-fXa activity.
ex vivo anti-fXa activity, showing maximum inhibitory activity of
82% and 91%, respectively (Fig. 5).
The antithrombotic activity of phenylenediamine derivative
was tested in a rat disseminated intravascular coagulation (DIC)
model.19 Compound 30h was administered intravenously to rats
after the injection of tissue factor (TF) and demonstrated dose-
dependent antithrombotic activity (Fig. 6).
In summary, we have identified novel spacer scaffolds for our S1
and S4 pharmacophores. Among them, ethylenediamine spacer is
useful to improve solubility. The anti-fXa activity of ethylenedia-
mine compounds could be improved by the introduction of a sub-
stituent at the C1 position in the S configuration. In addition,
compound 12 possessing a phenylenediamine spacer exhibited
strong anti-fXa activity (IC50 = 7.4 nM). X-ray structure analysis re-
vealed that compound 12 utilized an additional subsite S1b, while
retaining interactions in S1 and S4 sites. Further exploratory study
resulted in the discovery of compound 30h which demonstrated
excellent anti-fXa activity (IC50 = 2.2 nM), good anticoagulant
14. Anticoagulant activity was evaluated with the human plasma clotting time
doubling concentration (PTCT2). The method is as follows: prothrombin time
(PT) was measured with an Amelung KC-10A micro coagulometer (MC Medical,
Tokyo, Japan). First, 50
DMSO/saline and incubated for 1 min at 37 °C. Coagulation was started by the
addition of 100 L of Thromboplastin C Plus (0.5 U/mL) to the mixture, and the
lL of plasma was mixed with 50 lL of inhibitor or 4%
l
clotting time was measured. The concentration of inhibitor required to double
the clotting time (CT2) was estimated from the concentration–response curve
by a regression analysis.
15. Male Wistar rats were fasted overnight. Synthetic compounds were dissolved
in 0.5% (w/v) methylcellulose solution and administered orally to rats via a
stomach tube. For control rats, 0.5% (w/v) methylcellulose solution was
administered orally. The rats were anesthetized with ravonal at several time
points when blood samples were collected in the presence of trisodiumcitrate.
After the blood samples were centrifuged, the platelet poor plasma samples
were used for the measurement of their anti-fXa activity. Anti-fXa activity:
plasma (5
40 L), H2O (5
the addition of 0.75 M S-2222 (40
l
L) was mixed with 0.1 M Tris–0.2 M NaCl–0.2% BSA buffer (pH 7.4;
L), and 0.1 U/mL human fXa (10 L). A reaction was started by
L). The absorbance (OD) at 405 nm was
l
l
l
l
activity (PTCT2 = 3.9 lM), and improved solubility in neutral pH
monitored every 10 s with a SPECTRAmax 340 microplate spectrophotometer
(Molecular Devices, Sunnyvale, CA, USA) at room temperature, and the reaction
velocity (OD/min) was obtained. Anti-fXa activity (inhibition %) was calculated
as follows: anti-fXa activity = {1 À [(OD/min) of sample/(OD/min) of
control]} Â 100.
region. Compound 30h exhibited strong ex vivo anti-fXa activity
after intravenous administration and also demonstrated strong
antithrombotic effect in a rat DIC model. The findings described
in this Letter can offer possibilities for the future design of potent
fXa inhibitors.
16. The X-ray crystal structure coordinates of compound 12 in fXa have been
deposited in the Protein Data Bank (PDB code: 3Q3 K).
17. S1b pocket (also known as ‘ester binding pocket’) is composed of Gln192,
Arg143, Glu147, and Cys191-Cys220 disulfide bridge: (a) Qiao, J. X.; Wang, T.
C.; Wang, G. Z.; Cheney, D. L.; He, K.; Rendina, A. R.; Xin, B.; Luettgen, J. M.;
Knabb, R. M.; Wexler, R. R.; Lam, P. Y. S. Bioorg. Med. Chem. Lett. 2007, 17, 5041;
(b) Adler, M.; Kochanny, M. J.; Ye, B.; Rumennik, G.; Light, D. R.; Biancalana, S.;
Whitlow, M. Biochemistry 2002, 41, 15514; (c) Anselm, L.; Banner, D. W.; Benz,
J.; Zbinden, K. G.; Himber, J.; Hilpert, H.; Huber, W.; Kuhn, B.; Mary, J.-L.;
Otteneder, M.; Panday, N.; Ricklin, F.; Stahl, M.; Tohmi, S.; Haap, W. Bioorg.
Med. Chem. Lett. 2010, 20, 5313; (d) Huis, C. A. V.; Casimiro-Garcia, A.; Bigge, C.
F.; Cody, W. L.; Dudley, D. A.; Filipski, K. J.; Heemstra, R. J.; Kohrt, J. T.; Leadley,
R. J., Jr.; Narasimhan, L. S.; McClanahan, T.; Mochalkin, I.; Pamment, M.;
Peterson, J. T.; Sahasrabudhe, V.; Schaum, R. P.; Edmunds, J. J. Bioorg. Med.
Chem. 2009, 17, 2501; (e) Zhang, P.; Huang, W.; Wang, L.; Bao, L.; Jia, Z. J.;
Bauer, S. M.; Goldman, E. A.; Probst, G. D.; Song, Y.; Su, T.; Fan, J.; Wu, Y.; Li, W.;
Woolfrey, J.; Sinha, U.; Wong, P. W.; Edwards, S. T.; Arfsten, A. E.; Clizbe, L. A.;
Kanter, J.; Pandey, A.; Park, G.; Hutchaleelaha, A.; Lambing, J. L.; Hollenbach, S.
J.; Scarborough, R. M.; Zhu, B.-Y. Bioorg. Med. Chem. Lett. 2009, 19, 2179; (f)
Nazaré, M.; Will, D. W.; Matter, H.; Schreuder, H.; Ritter, K.; Urmann, M.;
Essrich, M.; Bauer, A.; Wagner, M.; Czech, J.; Lorenz, M.; Laux, V.; Wehner, V. J.
Med. Chem. 2005, 48, 4511.
18. Lilly’s group reported factor Xa inhibitors possessing 1,2-phenylenediamine or
anthranilamide moiety and similar hydrogen bondings was expected from the
computational modeling study: (a) Herron, D. K.; Goodson, T., Jr.; Wiley, M. R.;
Weir, L. C.; Kyle, J. A.; Yee, Y. K.; Tebbe, A. L.; Tinsley, J. M.; Mendel, D.; Masters,
J. J.; Franciskovich, J. B.; Sawyer, J. S.; Beight, D. W.; Ratz, A. M.; Milot, G.; Hall, S.
E.; Klimkowski, V. J.; Wikel, J. H.; Eastwood, B. J.; Towner, R. D.; Gifford-Moore,
D. S.; Craft, T. J.; Smith, G. F. J. Med. Chem. 2000, 43, 859; (b) Wiley, M. R.; Weir,
L. C.; Briggs, S.; Bryan, N. A.; Buben, J.; Campbell, C.; Chirgadze, N. Y.; Conrad, R.
C.; Craft, T. J.; Ficorilli, J. V.; Franciskovich, J. B.; Froelich, L. L.; Gifford-Moore, D.
S., ; Goodson, T., Jr.; Herron, D. K.; Klimkowski, V. J.; Kurz, K. D.; Kyle, J. A.;
Masters, J. J.; Ratz, A. M.; Milot, G.; Shuman, R. T.; Smith, T.; Smith, G. F.; Tebbe,
A. L.; Tinsley, J. M.; Towner, R. D.; Wilson, A.; Yee, Y. K. J. Med. Chem. 2000, 43,
883; (c) Masters, J. J.; Franciskovich, J. B.; Tinsley, J. M.; Campbell, C.; Campbell,
J. B.; Craft, T. J.; Froelich, L. L.; Gifford-Moore, D. S.; Hay, L. A.; Herron, D. K.;
Klimkowski, V. J.; Kurz, K. D.; Metz, J. T.; Ratz, A. M.; Shuman, R. T.; Smith, G. F.;
Smith, T.; Towner, R. D.; Wiley, M. R.; Wilson, A.; Yee, Y. K. J. Med. Chem. 2000,
43, 2087; (d) Franciskovich, J. B.; Masters, J. J.; Tinsley, J. M.; Craft, T. J.; Froelich,
L. L.; Gifford-Moore, D. S.; Klimkowski, V. J.; Smallwood, J. K.; Smith, G. F.;
Smith, T.; Towner, R. R.; Weir, L. C.; Wiley, M. R. Bioorg. Med. Chem. Lett. 2005,
15, 4838.
Acknowledgement
We are grateful to the anti-coagulant group in Biological Re-
search Laboratory for performing the biological assays. We thank
Dr. N. Sakabe, Dr. M. Suzuki, and Dr. N. Igarashi for their assistance
during diffraction data collection at BL-6B of Photon Factory, Japan.
References and notes
1. Mackman, N. Nature 2008, 451, 914.
2. Lam, Y.-Y.; Ma, T. K. W.; Yan, B. P. Int. J. Cardiol. 2010. doi:10.1016/
3. Leadley, R. J., Jr. Curr. Top. Med. Chem. 2001, 1, 151.
4. de Candia, M.; Lopopolo, G.; Altomare, C. Expert Opin. Ther. Patents 2009, 19,
1535.
5. Pinto, D. J. P.; Smallheer, J. M.; Cheney, D. L.; Knabb, R. M.; Wexler, R. R. J. Med.
Chem. 2010, 53, 6243.
6. Mehta, R. S. Expert Rev. Hematol. 2010, 3, 227.
7. Palareti, G.; Cosmi, B. Expert Opin. Emerg. Drugs 2010, 15, 107.
8. Schirmer, S. H.; Baumhäkel, M.; Neuberger, H.-R.; Hohnloser, S. H.; van Gelder,
I. C.; Lip, G. Y. H.; Böhm, M. JACC 2010, 56, 2067.
9. Ahrens, I.; Lip, G. Y. H.; Peter, K. Thromb. Haemost. 2010, 104, 49.
10. Nagata, T.; Yoshino, T.; Haginoya, N.; Yoshikawa, K.; Nagamochi, M.;
Kobayashi, S.; Komoriya, S.; Yokomizo, A.; Muto, R.; Yamaguchi, M.; Osanai,
K.; Suzuki, M.; Kanno, H. Bioorg. Med. Chem. 2009, 17, 1193.
11. Yoshikawa, K.; Yokomizo, A.; Naito, H.; Haginoya, N.; Kobayashi, S.; Mochizuki,
A.; Yoshino, T.; Nagata, T.; Osanai, K.; Watanabe, K.; Kanno, H.; Ohta, T. Bioorg.
Med. Chem. 2009, 17, 8206.
12. Yoshikawa, K.; Kobayashi, S.; Nakamoto, Y.; Haginoya, N.; Komoriya, S.;
Yoshino, T.; Nagata, T.; Mochizuki, A.; Watanabe, K.; Suzuki, M.; Kanno, H.;
Ohta, T. Bioorg. Med. Chem. 2009, 17, 8221.
13. The in vitro anti-fXa activity was measured by using chromogenic substrate S-
2222 (Chromogenix, Inc.) and human fXa (Enzyme Research Laboratories).
Aqueous DMSO (5% V/V; 10
0.0625 U/mL human fXa (10
l
L) or inhibitors in aqueous DMSO (10
lL) and
l
L) were mixed with 0.1 M Tris–0.2 M NaCl–0.2%
BSA buffer (pH 7.4; 40
2222 (40 L). The absorbance (OD) at 405 nm was monitored every 10 s with a
SPECTRAmax 340 microplate spectrophotometer (Molecular Devices,
lL). A reaction was started by the addition of 0.75 M S-
19. Furugohri, T.; Shiozaki, Y.; Muramatsu, S.; Honda, Y.; Matsumoto, C.; Isobe, K.;
Sugiyama, N. Eur. J. Pharm. 2005, 514, 35.
l