ACS Catalysis
Letter
Chemoselective Oxidation of Sulfides to Sulfones with Potassium
Hydrogen Persulfate. Tetrahedron Lett. 1981, 22, 1287−1290.
(4) Schmitt, A.-M. D.; Schmitt, D. C., Synthesis of Sulfonamides. In
Synthetic Methods in Drug Discovery; Blakemore, D. C., Doyle, P. M.,
Fobian, Y. M., Eds.; Royal Society of Chemistry: Cambridge, 2016;
Vol. 2, pp 123−138.
as the source of sulfur dioxide. A broad range of boronic acids
was tolerated, including electron-deficient and heterocyclic,
including pyridyl, systems. Significantly, these types of boronic
acids delivered only low yields or failed completely with prior
methods, which were based predominantly on precious-metal
catalysts, and often required custom ligands. The developed
protocol can be scaled up to a preparative gram scale using 2.5
mol % catalyst. The in-situ-formed sulfinates were elaborated
efficiently to sulfones, sulfonamides, sulfonyl fluoride, and PFP
sulfonate esters. The procedure was applicable to the direct
synthesis of several active pharmaceutical ingredients, provid-
ing a good demonstration of the functional group compatibility
of the system. Given the increasing attention on nickel as a
sustainable and inexpensive base-metal catalyst, and the
importance of sulfonyl-containing compounds in both
pharmaceuticals and agrochemicals, we anticipate wide uptake
of the reported methods.
(5) Bassin, J. P.; Cremlyn, R. J.; Swinbourne, F. J. Review.
Chlorosulfonation of Aromatic and Hetero-Aromatic Systems.
Phosphorus, Sulfur Silicon Relat. Elem. 1991, 56, 245−275.
(6) (a) Zheng, D.; Wu, J. Sulfur Dioxide Insertion Reactions for
Organic Synthesis; Springer: Berlin, 2017. (b) Willis, M. C. New
Catalytic Reactions Using Sulfur Dioxide. Phosphorus, Sulfur Silicon
Relat. Elem. 2019, 194, 654−657.
(7) (a) Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed
Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132,
́
16372−16373. (b) Woolven, H.; Gonzalez-Rodríguez, C.; Marco, I.;
Thompson, A. L.; Willis, M. C. DABCO-Bis(sulfur dioxide), DABSO,
as a Convenient Source of Sulfur Dioxide for Organic Synthesis:
Utility in Sulfonamide and Sulfamide Preparation. Org. Lett. 2011, 13,
4876−4878.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
(8) (a) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Palladium-
Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a
Sulfur Dioxide Surrogate: A Gas-and Reductant-Free Process. Angew.
Chem., Int. Ed. 2014, 53, 10204−10208. (b) Flegeau, E. F.; Harrison,
J.; Willis, M. C. One-Pot Sulfonamide Synthesis Exploiting the
Palladium-Catalyzed Sulfination of Aryl Iodides. Synlett 2016, 27,
101−105. (c) Deeming, A. S.; Russell, C. J.; Willis, M. C.
Palladium(II)-Catalyzed Synthesis of Sulfinates from Boronic Acids
and DABSO: A Redox-Neutral, Phosphine-Free Transformation.
Angew. Chem., Int. Ed. 2016, 55, 747−750. (d) Chen, Y.; Willis, M. C.
Copper(I)-Catalyzed Sulfonylative Suzuki-Miyaura Cross-Coupling.
Chem. Sci. 2017, 8, 3249−3253. (e) Davies, A. T.; Curto, J. M.;
Bagley, S. W.; Willis, M. C. One-Pot Palladium-Catalyzed Synthesis of
Sulfonyl Fluorides From Aryl Bromides. Chem. Sci. 2017, 8, 1233−
1237. (f) Vedovato, V.; Talbot, E. P. A.; Willis, M. C. Copper-
Catalyzed Synthesis of Activated Sulfonate Esters from Boronic Acids,
DABSO, and Pentafluorophenol. Org. Lett. 2018, 20, 5493−5496.
(g) Chen, Y.; Murray, P. R. D.; Davies, A. T.; Willis, M. C. Direct
Copper-Catalyzed Three-Component Synthesis of Sulfonamides. J.
Am. Chem. Soc. 2018, 140, 8781−8787.
(9) (a) Zhu, H.; Shen, Y.; Deng, Q.; Huang, C.; Tu, T. One-Pot
Bimetallic Pd/Cu-Catalyzed Synthesis of Sulfonamides from Boronic
Acids, DABSO and O-Benzoyl Hydroxylamines. Chem. - Asian J.
2017, 12, 706−712. (b) Wang, X.; Xue, L.; Wang, Z. A Copper-
Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur
Dioxide, and Hydrazines. Org. Lett. 2014, 16, 4056−4058. (c) Zheng,
D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component
Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. Org.
Chem. Front. 2016, 3, 359−363. (d) Mao, R.; Zheng, D.; Xia, H.; Wu,
J. Copper(I)-Catalyzed Sulfonylation of (2-Alkynylaryl)boronic Acids
With DABSO. Org. Chem. Front. 2016, 3, 693−696. (e) Wang, K.;
Wang, G.; Duan, G.; Xia, C. Cobalt(II)-Catalyzed Remote C5-
Selective C-H Sulfonylation of Quinolines via Insertion of Sulfur
Dioxide. RSC Adv. 2017, 7, 51313−51317.
(10) (a) Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl
Halides, Potassium Metabisulfite, and Hydrazines. Chem. Commun.
2012, 48, 10037−10039. (b) Wang, M.; Zhao, J.; Jiang, X. Aryl
Methyl Sulfone Construction from Eco-Friendly Inorganic Sulfur
Dioxide and Methyl Reagents. ChemSusChem 2019, 12, 3064−3068.
(c) Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary
Sulfonamides Through Three Diverse Salts. Green Chem. 2018, 20,
5469−5473.
(11) (a) Zheng, D. Q.; An, Y. Y.; Li, Z. H.; Wu, J. Metal-Free
Aminosulfonylation of Aryldiazonium Tetrafluoroborates with
DABCO.(SO2)2 and Hydrazines. Angew. Chem., Int. Ed. 2014, 53,
2451−2454. (b) Tsai, A. S.; Curto, J. M.; Rocke, B. N.; Dechert-
Schmitt, A.-M. R.; Ingle, G. K.; Mascitti, V. One-Step Synthesis of
Sulfonamides from N-Tosylhydrazones. Org. Lett. 2016, 18, 508−511.
(c) Deeming, A. S.; Russell, C. J.; Willis, M. C. Combining
■
S
Experimental procedures and supporting characteriza-
tion data and spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the EPSRC (EP/K024205/1) for support of this
study.
■
REFERENCES
■
(1) (a) Julia, M.; Paris, J.-M. Syntheses a l’aide de Sulfones v(+)-
Methode de Synthese Generale de Doubles Liaisons. Tetrahedron Lett.
́
1973, 14, 4833−4836. (b) Blakemore, P. R.; Cole, W. J.; Kocienski, P.
J.; Morley, A. A Stereoselective Synthesis of trans-1,2-Disubstituted
Alkenes Based on the Condensation of Aldehydes with Metallated 1-
Phenyl-1H-tetrazol-5-yl Sulfones. Synlett 1998, 1998, 26−28.
(2) (a) Emmett, E. J.; Willis, M. C. The Development and
Application of Sulfur Dioxide Surrogates in Synthetic Organic
Chemistry. Asian J. Org. Chem. 2015, 4, 602−611. (b) Gao, P.;
Davies, J.; Kao, R. Y. T. Dehydrosqualene Desaturase as a Novel
Target for Anti-Virulence Therapy against Staphylococcus aureus. mBio
̈
The Ramberg-Backlund Reaction. Org. React. 2003, 62, 359−475.
̈
(d) Soderman, S. C.; Schwan, A. L. 1,2-Dibromotetrachloroethane:
̈
An Ozone-Friendly Reagent for the in Situ Ramberg-Backlund
Rearrangement and Its Use in the Formal Synthesis of E-Resveratrol.
J. Org. Chem. 2012, 77, 10978−10984.
(3) (a) Kozak, J. A.; Dake, G. R. Total Synthesis of
(+)-Fawcettidine. Angew. Chem., Int. Ed. 2008, 47, 4221−4223.
(b) Jana, N. K.; Verkade, J. G. Phase-Vanishing Methodology for
Efficient Bromination, Alkylation, Epoxidation, and Oxidation
Reactions of Organic Substrates. Org. Lett. 2003, 5, 3787−3790.
(c) Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R.
Oxidation of Sulfides to Sulfoxides and Sulfones with 30% Hydrogen
Peroxide Under Organic Solvent- and Halogen-Free Conditions.
Tetrahedron 2001, 57, 2469−2476. (d) Trost, B. M.; Curran, D. P.
10672
ACS Catal. 2019, 9, 10668−10673