Full Paper
NMR (CD3CN): δ = –104.1 (1 F) ppm. 13C NMR (CD3CN): δ = 161.0
(d, J = 257.0 Hz, C6), 149.8 (C8), 141.2 (C9), 137.6 (C4), 124.4 (C5),
106.2 (C7) ppm.
Croatia, 2012, chapter 10, p. 183–206; b) C. Jovene, M. Sebban, J. Marrot,
R. Goumont, in: Targets in Heterocyclic Systems, Chemical Society of Italy,
Rome, 2012, vol. 16, p. 90–112.
[6] S. K. Kotovskaya, S. A. Romanova, V. N. Charushin, M. I. Kodess, O. N.
Chupakhin, J. Fluorine Chem. 2004, 125, 421–428.
[7] J. F. Liebman, A. Greenberg, W. R. Dolbier, in: Fluorine-Containing Mol-
ecules: Structure Reactivity, Synthesis and Applications. Wiley-VCH Verlag
GmbH, 1988.
[8] B. Solano, V. Junnotula, A. Marin, R. Villar, A. Burguete, E. Vicente, S. Perez-
Silanes, I. Aldana, A. Monge, S. Dutta, U. Sarkar, K. S. Gates, J. Med. Chem.
2007, 50, 5485–5492.
[9] M. L. Lavaggi, M. Nieves, M. Cabrera, C. Olea-Azar, A. Lopez de Cerain, A.
Monge, H. Cerecetto, M. Gonzalez, Eur. J. Med. Chem. 2010, 45, 5362–
5369.
[10] C. Jovené, M. Jacquet, J. Marrot, F. Bourdreux, M. E. Kletsky, O. N. Burov,
A. M. Goncalves, R. Goumont, Eur. J. Org. Chem. 2014, 6451–6466.
[11] P. B. Gosh, B. Ternai, M. Whitehouse, J. Med. Chem. 1972, 15, 255–260.
[12] N. Okiyama, S. Uchiyama, K. Imai, T. Santa, Heterocycles 2002, 58, 165–
173.
[13] a) R. Goumont, M. Sebban, P. Sépulcri, J. Marrot, F. Terrier, Tetrahedron
2002, 58, 3249–3262; b) C. Jovené, M. Jacquet, E. Chugunova, S. Khar-
lamov, R. Goumont, Tetrahedron 2016, 72, 2057–2063.
[14] a) S. C. Waller, Y. A. He, G. R. Harlow, Y. Qun He, E. A. Mash, J. R. Halpert,
Chem. Res. Toxicol. 1999, 12, 690–699; b) A. A. Gakh, S. V. Romaniko, B. I.
Ugrak, A. A. Fainzilberg, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)
1991, 40, 1432–1436.
X-ray Structural Analysis: X-ray intensity data were collected with
a Bruker X8-APEX2 CCD area-detector diffractometer using Mo-Kα
radiation (λ = 0.71073 Å). Data reduction was accomplished using
SAINT V7.03. The substantial redundancy in data allowed a semiem-
pirical absorption correction (SADABS V2.10)[27] to be applied, on
the basis of multiple measurements of equivalent reflections. The
structure was solved by direct methods, developed by successive
difference Fourier syntheses, and refined by full-matrix least-squares
on all F2 data using SHELXTL V6.12.[28] Hydrogen atoms were in-
cluded in calculated positions and allowed to ride on their parent
atoms.
Crystal Structure Analysis: CCDC 1469138 (for 9) contains the sup-
Supporting Information (see footnote on the first page of this
article): Copies of 1H, 19F and 13C NMR and UV spectra of the key
intermediates together with the cif file for crystallographic structure
1.
[15] F. Terrier, in: Modern Nucleophilic Aromatic Substitution, Wiley-VCH, Wein-
heim, Germany, 2013.
[16] a) F. Terrier, R. Goumont, M. J. Pouet, J. C. Hallé, J. Chem. Soc. Perkin Trans.
2 1995, 1629–1637; b) M. Mokhtari, R. Goumont, J. C. Halle, F. Terrier,
ARKIVOC 2002, 11, 168–186.
[17] a) T. Kawakami, H. Suzuki, J. Chem. Soc. Perkin Trans. 1 2000, 1259–1264;
b) S. Sankararaman, W. A. Haney, J. K. Kochi, J. Am. Chem. Soc. 1987, 109,
7824–7838.
Acknowledgments
The authors are grateful for the support of this work by the
Centre National de la Recherche Scientifique (CNRS), French
Ministry of Research and for the financial support of the Russian
Scientific Foundation (grant number 14-50-00014).
[18] a) L. L. Kuznetsov, B. V. Gidaspov, Russ. J. Org. Chem. 1974, 10, 541–546;
b) L. L. Kuznetsov, B. V. Gidaspov, Russ. J. Org. Chem. 1982, 18, 595–601.
[19] K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett. 2007, 9, 1809–1811.
[20] G. S. Hiers, F. D. Hager, Org. Synth., Coll. Vol. 1 1941, 58.
[21] a) S. Kurbatov, R. Goumont, S. Lakhdar, J. Marrot, F. Terrier, Tetrahedron
2005, 61, 8167–8176; b) E. A. Chugunova, A. D. Voloshina, R. E. Mukha-
matdinova, I. V. Serkov, A. N. Proshin, E. M. Gibadullina, A. R. Burilov, N. V.
Kulik, V. V. Zobov, D. B. Krivolapov, A. B. Dobrynin, R. Goumont, Lett. Drug
Des. Discovery 2014, 11, 502–512.
Keywords: Synthetic methods · Tautomerism · Fluorine ·
Phenols · Azides
[1] P. Drost, Justus Liebigs Ann. Chem. 1899, 307, 49–69.
[2] a) C. Jovene, E. Chugunova, R. Goumont, Mini-Rev. Med. Chem. 2013, 13,
1089–1136; b) E. Chugunova, M. Sazykina, E. Gibadullina, A. Burilov, I.
Sazykin, V. Chistyakov, R. Timasheva, D. Krivolapov, R. Goumont, Lett.
Drug Des. Discovery 2013, 10, 145–154.
[22] C. K. Prout, O. J. R. Hadder, D. Viterbo, Acta Crystallogr., Sect. B 1972, 28,
1523–1526.
[23] P. Sepulcri, J. C. Halle, R. Goumont, D. Riou, F. Terrier, J. Org. Chem. 1999,
64, 9254–9257.
[3] a) E. Chugunova, C. Boga, I. Sazykin, S. Cino, G. Micheletti, A. Mazzanti,
M. Sazykina, A. Burilov, L. Khmelevtsova, N. Kostina, Tetrahedron 2015,
93, 349–359; b) W. Duan, J. Hou, X. Chu, X. Li, J. Zhang, J. Li, W. Xu, Y.
Zhang, Bioorg. Med. Chem. 2015, 23, 4481–4488.
[4] a) J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao, Z. Li, J. Zhang, F. Huang, H.
Ade, H. Yan, Adv. Mater. 2015, 27, 1–6; b) P. G. Morozov, S. V. Kurbatov,
Y. P. Semenyuk, O. N. Burov, M. E. Kletskii, N. S. Fedik, K. F. Suzdalev, Chem.
Heterocycl. Compd. 2015, 51, 903–912; c) P. M. Njogu, E. M. Guantai, E.
Pavadai, K. Chibale, Infect. Dis. 2016, 2, 8–31.
[24] A. J. Boulton, P. B. Gosh, Adv. Heterocycl. Chem. 1969, 10, 1–41.
[25] A. Gasco, A. J. Boulton, Adv. Heterocycl. Chem. 1981, 29, 251–340.
[26] P. B. Ghosh, M. W. Whitehouse, J. Med. Chem. 1968, 11, 305–312.
[27] G. M. Sheldrick, SHELXTL, version 5.1, Bruker AXS, Inc., Madison, WI, USA,
1999.
[28] APEX2, version 1.0-8, Bruker AXS, Madison, WI, USA, 2003.
[5] a) M. Sebban, C. Jovene, P. Sepulcri, D. Vichard, F. Terrier, R. Goumont, in:
Magnetic Resonance Spectroscopy (Ed.: Donghyun Kim), INTECH Publisher,
Received: June 15, 2016
Published Online: ■
Eur. J. Org. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim