Chemistry Letters Vol.33, No.6 (2004)
697
9 H. Paulsen and A. C. Heitman, Liebigs Ann. Chem., 1988, 1061.
10 S. Hanessian and J. H. Banoub, Carbohydr. Res., 53, C13 (1977);
MS/MS of these last selected two molecular ions afforded series
of expected diagnostic product ions, thus confirming the pro-
posed structure.
‘‘ACS Advances in Chemistry Series,’’ (1976), Vol. 39, p 36.
11 mp 120–121 ꢁC; ½ꢁꢃD
23
þ1:6ꢁ (c 0.1, CHCl3); 1H NMR
The 2-N-allyloxycarbonyl-2-deoxy-ꢀ-D-disaccharide 7 was
then subjected to the Zemplen deacetylation, and the N-allylox-
ycarbonyl group was deprotected to the free amino-group using
Pd(PPh3)4 in the presence of an allyl acceptor as previously re-
ported.7,8 This was followed by a hydrogenolysis in the presence
of 10% Pd/C in methanol, leading to the desired aminoglycosyl-
heptose disaccharide ꢀ-D-GlcpN-(1-7)-L-glycero-D-manno-hep-
topyranose 1, in 82% overall yield.12
It may be noted that another approach for the synthesis of
the aminoglucosylheptose disaccharide hydrochloride 1 was
achieved using 3,4,6-tri-O-acetyl-2-azido-2-deoxy-ꢁ-D-gluco-
pyranosyl bromide (3.7 equiv.) and benzyl-2,3,5,6-tetra-O-ben-
zyl-L-glycero-D-manno-heptofuranoside (1 equiv.) in the pres-
ence of silver silicate at ꢂ50 ꢁC and led to an anomeric
mixture of the expected disaccharides.13
The synthesis of disaccharide 6-O-(3,4,6-tri-O-acetyl-2-
N-allyloxycarbonyl-2-amino-2-deoxy-ꢀ-D-glucopyranosyl)-7-
deoxy-1,2:3,4-di-O-isopropylidene-L-glycero-ꢁ-D-galacto-hep-
topyranose (9) was performed by reacting stoichiometric
amounts of the glycosyl donor 6 with 1,2:3,4-di-O-isopropyli-
dene-7-deoxy-L-glycero-ꢁ-D-galacto-heptopyranose (8)14 as
the glycosyl acceptor and TMSOTf in dry CH2Cl2 at ꢂ30 ꢁC
for 18 h to afford, after conventional work up, a chromatograph-
ically pure white solid foam in 79% yield which was crystallized
from ether/EtOAc (72% yield).15
Finally, the 9 was recovered by the deprotection pathway
used in case of disaccharide 7, leading to the expected 6-O-
(-2-N-acetamido-2-deoxy-ꢀ-D-glucopyranosyl)-7-deoxy-L-glyc-
ero-D-galacto-heptopyranose disaccharide (10) in 80% overall
yield.16
(300 MHz, CDCl3): ꢂ 5.89 (m, 1H, CH=CH2), 5.33–5.15 (m,
3H, CH=CH2, H-30), 5.07 (t, 1H, J3 ;4 ¼ 9:5 Hz, H-40), 4.92
(m, 1H NH0), 4.81(m, 1H, H-20); 4.72–4.68 (m, 2H, 2CH-Ph),
4.62–4.48 (m, 4H, CH2-CH=CH2, H-10, H-1, ꢁ-Hep), 4.60 (d,
1H, J ¼ 12:0 Hz, CH-Ph), 4.56 (d, 1H, J ¼ 12:0 Hz, CH-Ph),
4.53 (d, 1H, J ¼ 11:8 Hz, CH-Ph), 4.50 (dd, 1H, H-4), 4.44 (d,
0
0
0
0
1H, J ¼ 11:9 Hz, CH-Ph), 4.21 (m, 2H, J6 a,6 b ¼ 12:3 Hz,
J5;6 ¼ 4:7 Hz, J5;6 ¼ 4:2 Hz, H-6, H-60 non reducing end unit),
0
4.25 (dd, 1H, J1;2 ¼ 4:0 Hz, J2;3 ¼ 4:1 Hz, H-2), 4.27 (dd, 1H,
J3;4 ¼ 2:7 Hz, H-3), 4.31 (dd, 1H, J4;5 ¼ 7:1 Hz, H-5), 3.70 (m,
1H, H-50), 2.09, 2.04, 2.03 (3s, 9H, 3CO-CH3); ESI-QqTOF-
MS-MS: Calcd [M + H]þ m=z 1033.4460, Found [M + H]þ
m=z 1033.6680; Anal. Calcd for C58H66O16N (1033.15): C,
67.42, H, 6.43, N, 1.35. Found: C, 67.72, H, 6.59, N, 1.20%.
12 ½ꢁꢃD þ7:0ꢁ (c 1.0, H2O); 1H NMR (300 MHz, D2O): ꢂ 4.73 (d,
23
1H, H-10), 4.09 (d, 1H, H-1). 3.92 (dd, 1H, J1;2 ¼ 1:8 Hz, J2;3
¼
4:6 Hz, H-2), 3.19 (dd, 1H, H-5), 4.13 (m, 1H, J5;6 ¼ 1:8 Hz,
J6;7 ¼ 6:4 Hz, H-6), 3.69 (dd, 1H, H-3), 3.64–3.52 (m, 3H,
J1;2 ¼ 1:2 Hz, J2;3 ¼ 9:4 Hz, J7a,7b ¼ 11:7 Hz, H-20, H-7a, H-
7b), 3.52 (dd, 1H, J3 ;4 ¼ 9:0 Hz, H-30), 3.48 (d, 2H, H-60),
3.28 (dd, 1H, H-40), 3.17 (dd, 1H, H-50). 13C NMR (125 MHz,
CDCl3): ꢂ 102.4 (C-10), 94.9 (C-1ꢁ), 94.7 (C-1ꢀ), 77.3 (C-5),
76.0 (C-50), 73.0 (C-30), 72.5 (C-3ꢁ), 71.9 (C-3ꢀ), 71.6 (C-
2ꢀ), 71.5 (C-2ꢁ), 68.1 (C-6), 67.1 (C-4ꢁ), 65.6 (C-40), 66.5
(C-4ꢀ), 63.8 (C-7ꢁ), 63.4 (C-7ꢀ), 61.3 (C-60), 55.3 (C-20).
ESI-QqTOF-MS-MS: Calcd [M + H]þ m=z 372.1427, Found
[M + H]þ m=z 372.1627; Anal. Calcd for C58H66O16N
(371.30): C, 42.05, H, 6.78, N, 3.77. Found: C, 42.51, H, 6.61,
N, 3.92%.
0
0
13 H. Paulsen, A. Wulf, and A. C. Heitman, Liebigs Ann. Chem.,
1988, 1073.
14 R. U. Lemieux, P. H. Boullanger, D. R. Bundle, D. A. Baker, A.
Nagpurkar, and A. Venot, Nouv. J. Chim., 2, 321 (1978).
15 mp 165–166 ꢁC; ½ꢁꢃD
23
þ4:1ꢁ (c 1.0, CHCl3); 1H NMR
To sum up, this work provided two stereocontrolled synthe-
ses of immunogically relevant disaccharides which were achiev-
ed in excellent yields using the N-allyloxycarbonyl approach.
The preparation of antigenic branched glycoconjugates
of the poly-N-acetyllactosamine series [ꢀ-D-Galp-(1 ! 4)-
GlcpNAc-(1-]n, using the N-allyloxycarbonyl derivatives of lac-
tosamine is under studies in our laboratories and will be reported
in due course.
(300 MHz, CDCl3): ꢂ 5.99 (m, 1H, CH=CH2), 5.49 (d, 1H,
J1;2 ¼ 5:0 Hz, H-1), 5.28, 5.15 (2m, 2H, CH=CH2), 5.25 (dd,
1H, J2 ;3 ¼ 10:1 Hz, J3 ;4 ¼ 9:5 Hz, H-30, ꢀ-GlcNAOC), 5.06
0
0
0
0
(d, 1H, J1 ;2 ¼ 8:5 Hz, H-10), 4.96 (dd, 1H, J4 ;5 ¼ 10:0 Hz, H-
40), 4.60 (dd, 1H, J2;3 ¼ 2:4 Hz, J3;4 ¼ 8:0 Hz, H-3, ꢁ-Hep),
4.59, 4.43 (2m, 2H, CH2–CH=CH2), 4.33 (dd, 1H, H-2), 4.29
0
0
0
0
0
0
(dd, 1H, J4;5 ¼ 1:5 Hz, H-4), 4.28 (dd, 1H, J5 ,6 a ¼ 5:1 Hz,
J6 a,6 b ¼ 12:2 Hz, H-60a), 4.10 (m, 2H, J5 ,6 b ¼ 2:5, J5 ,6a
¼
0
0
0
0
0
0
2:5 Hz, H-60b), 3.93 (m, 2H, J5;6 ¼ 8:0 Hz, J6,CH3 ¼ 6:6 Hz,
H-6), 3.80 (m, 1H, H-50), 3.70 (m, 1H, H-5), 3.62 (m, 1H,
J2 ,NH ¼ 9:2 Hz, H-20), 2.02, 1.99, 1.93 (3s, 9H, CO-CH3),
Joseph Banoub acknowledges the Natural Sciences and
Engineering Research Council of Canada for a Discovery grant.
0
1.46, 1.40, 1.31, 1.30 (4s, 12H, CH3iso), 1.27 (d, 3H, H-7);
13C NMR (125 MHz, CDCl3): ꢂ 170.7, 170.4, 170.1 (CO–
CH3), 156.2 (CO, allyloxycarbonyl), 134.7 (CH=CH2), 116.8
(CH=CH2), 109.6 (Ciso), 102.4 (C-10, ꢀ-GlcNAOC), 97.0 (C-1,
ꢁ-Hep), 76.2 (C-6), 74.4 (C-5), 72.2 (C-50), 72.0 (C-30) 71.7
(C-2), 71.6 (C-3), 71.2 (C-4), 70.0 (C-40), 65.5 (CH2–CH=CH2),
63.0 (C-60), 51.2 (C-20), 26.4, 26.3, 25.3, 24.5 (CH3iso), 18.1
(C-7, Hep), 21.2, 21.0, 20.9 (3s, 9H, CO-CH3).
References and Notes
Y. A. Knirel, J. H. Helbig, and U. Zahringer, Carbohydr. Res.,
283, 129 (1996).
1
2
3
M. Bruneteau and S. Minka, Biochimie, 85, 145 (2003).
C. Erridge, E. Bennett-Guerrero, and I. R. Poxton, Microbes
Infect., 4, 837 (2002).
23
1
16 ½ꢁꢃD þ10:7ꢁ (c 1.0, H2O); H NMR (300 MHz, D2O): ꢂ 5.12
4
5
Y. A. Knirel, E. Vinogradov, N. Jimenez, S. Merino, and J. M.
Tomas, Carbohydr. Res., 339, 787 (2004).
J. H. Banoub and H. J. Hodder, Can. J. Biochem. Cell Biol., 63,
1199 (1985); J. H. Banoub, F. Michon, and R. Roy, Carbohydr.
Res., 128, 203 (1984).
(d, 1H, J1;2 ¼ 4:0 Hz, H-1ꢁ), 5.09 (d, 1H, J1;2 ¼ 9:0 Hz,
H-1ꢀ), 4.69 (d, 1H, J1 ;2 ¼ 8:0 Hz, H-10), 4.68 (m, 1H, H-6a0),
4.18 (m, 1H, H-6b0), 3.98 (dd, 1H, J2;3 ¼ 5:1 Hz, H-2), 3.76
(m, 1H, H-4), 3.70 (dd, 1H, J2;3 ¼ 3:9 Hz, J3;4 ¼ 10:1 Hz,
H-3), 3.61 (m, 1H, H20), 3.54 (m, 1H, H-5), 3.50 (dd, 1H,
0
0
6
7
8
J. H. Banoub, D. H. Shaw, N. A. Nakhla, and H. J. Hodder, Eur.
J. Biochem., 179, 651 (1989).
P. Boullanger, J. H. Banoub, and G. Descotes, Can. J. Chem., 65,
1343 (1987).
J. H. Banoub, P. Boullanger, and D. Lafont, Chem. Rev., 92,
11676 (1992).
J3 ;4 ¼ 9:0 Hz, H-30), 3.28 (dd, 1H, H-40), 3.17 (dd, 1H, H-50),
1.30 (d, 3H, H-7);. ESI-QqTOF-MS-MS: Calcd [M + H]þ m=z
356.1481, Found [M + H]þ m=z 356.1691; Anal. Calcd for
0
0
C13H25O10N (355.31): C, 42.97, H, 6.94, N, 3.86. Found: C,
42.61, H, 6.82, N, 3.80%.
Published on the web (Advance View) May 17, 2004; DOI 10.1246/cl.2004.696