C O M M U N I C A T I O N S
Scheme 1. Some Useful Transformations of Chiral Cyclopropenes
for the synthesis of the structurally related fatty acid (11R,12S)-
lactobacillic acid.20
Note Added after ASAP Posting. After this paper was posted
ASAP on 06/30/2004, structures 8-11 were corrected and the
reaction conditions were added to Scheme 1. The corrected version
was posted 07/06/2004.
Supporting Information Available: Experimental procedures for
reactions and X-ray structural data for 1, 2, and 10. This material is
References
(1) For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds; John
Wiley: New York, 1998. (b) Doyle, M. P.; Ren, T. In Progress in
Inorganic Chemistry; Karlin, K. D., Ed.; John Wiley: New York, 2001;
pp 113-168. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003,
2861-2908. (d) Forbes, D. C.; McMills, M. C. Curr. Org. Chem. 2001,
5, 1091-1105. (e) Hashimoto, S. Farumashia 2001, 37, 1095-1097. (f)
Doyle, M. P.; Forbes, D. C. Chem. ReV. 1998, 98, 911-935. (g) Doyle,
M. P.; Protopopova, M. N. Tetrahedron 1998, 54, 7919-7946. (h)
Kitagaki, S.; Hashimoto, S. Yuki Gosei Kagaku Kyokaishi 2001, 59, 1157-
1168. (i) Davies, H. M. L.; Antoulinakis, E. G. J. Organomet. Chem.
2001, 617-618. (j) Davies, H. M. L. Eur. J. Org. Chem. 1999, 2459-
2469.
(2) See: (a) Wehn, P. M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823-
4826. (b) Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc.
2003, 125, 2028-2029. (c) Espino, C. G.; Du Bois, J. Angew. Chem.,
Int. Ed. 2001, 40, 598-600. (d) Espino, C. G.; Wehn, P. M.; Chow, J.
Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935-6936.
(3) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. J. Chem.
Soc., Chem. Commun. 1990, 361-362.
(a) Cyclopentadiene (10 equiv) in benzene at 23 °C for 12 h (94%).
(b) 2,3-Dimethylbutadiene at 80 °C for 28 h (89%). (c) LAH (1.5 equiv) in
Et2O, then EtOAc, then H2O or D2O (80%). (d) LAH (2 equiv) in Et2O,
then EtOAC, then I2 (71%). (e) DIBAL (2 equiv) in PhCH3 for 1 h at
-78 °C, then 1 h at 23 °C (83%). (f) 5% Pd on CaCO3 (1 mol %) in EtOAc
with H2 (1 atm) 2 h (92%). (g) Pd(PPh3)4 (1 mol %) and n-Bu3SnH
(1.1 equiv) in THF at -78 °C for 1 h (82%).
Scheme 2. Synthesis of (9R,10S)-Dihydrosterculic Acid
(4) (a) Doyle, M. P.; Brandes, B. D.; Kazala, A. P.; Pieters, R. J.; Jarstfer,
M. B.; Watkins, L. M.; Eagle, C. T. Tetrahedron Lett. 1990, 31, 6613-
6616. (b) Doyle, M. P.; Zhou, Q. L.; Simonsen, S. H.; Lynch, V. Synlett
1996, 697-698. (c) Doyle, M. P.; Winchester, W. R.; Protopopova, M.
N.; Mu¨ller, P.; Bernardinelli, G.; Ene, D.; Motallebi, S. HelV. Chim. Acta
1993, 76, 2227-2235.
(5) Hashimoto, S.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1990, 31,
5173-5174.
(6) (a) Pirrung, M. C.; Morehead, A. T., Jr. J. Am. Chem. Soc. 1994, 116,
8991-9000. (b) Pirrung, M. C.; Morehead, A. T., Jr. J. Am. Chem. Soc.
1996, 118, 8162-8163. (c) Pirrung, M. C.; Liu, H.; Morehead, A. T., Jr.
J. Am. Chem. Soc. 2002, 124, 1014-1023.
(7) Alonso, M. E.; Garc´ıa, M. del C. Tetrahedron 1989, 45, 69-76.
(8) (a) Sheehan, S. M.; Padwa, A.; Snyder, J. P. Tetrahedron Lett. 1998, 39,
949-952. (b) Snyder, J. P.; Padwa, A.; Stengel, T. J. Am. Chem. Soc.
2001, 123, 11318-11319.
purity are valuable and versatile synthetic intermediates. Scheme
1 details a number of interconversions that have been carried out
with ethyl (1S)-2-n-pentyl-2-cyclopropene-carboxylate.18 It is note-
worthy that the reductive transformations c and f of Scheme 1 afford
access to the cis or trans cyclopropyl derivatives that would result
from cyclopropanation of terminal olefins, but without problems
of cis/trans stereoselectivity.
(9) (a) Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002,
124, 7181-7192. (b) Yoshikai, N.; Nakamura, E. AdV. Synth. Catal. 2003,
345, 1159-1171.
(10) Nowlan, D. T., III; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J.
Am. Chem. Soc. 2003, 125, 15902-15911. These workers have also
measured 12C/13C kinetic isotope effects for olefin cyclopropanation.
(11) Available from Aldrich Co. or as described in: Pikul, S.; Corey, E. J.
Org. Synth. Coll. Vol. IX 1998, 387-390.
(12) Reaction time was generally determined by TLC analysis of the reaction
mixture (10:1 C6H6-CH3CN) periodically. A mixture of anhydrous Na2-
CO3 and 4 Å molecular sieves was placed in the trap arm of the Dean-
Stark apparatus to facilitate removal of HOAc from the distillate of C6H5Cl.
(13) For full details, see Supporting Information. NMR spectra were also in
accord with the assigned structure.
(14) (a) Doyle, M.; Protopopova, M.; Mu¨ller, P.; Ene, D.; Shapiro, E. J. Am.
Chem. Soc. 1994, 116, 8492-8498. (b) Protopopova, M.; Doyle, M.;
Mu¨ller, P.; Ene, D. J. Am. Chem. Soc. 1992, 114, 2755-2757. (c) Mu¨ller,
P.; Imoga¨ı, H. Tetrahedron: Asymmetry 1998, 9, 4419-4428.
(15) In this connection, we have determined that the reaction of ethyl
diazoacetate and 0.5 mol % 1 in CH2Cl2 at 23 °C with 1-nonyne is 2.4
times as fast as with 1-nonene.
(16) Trans isomer of 7 was also formed as a minor product (ratio 5:1).
(17) These analyses will be detailed in a subsequent publication. Even if the
intermediate Rh-carbene complex is an equilibrating mixture of tetra-
bridged and tribridged species (the latter analogous to 8) and even if the
tribridged species is only a minor component of that equilibrium, the
metallacyclobutane pathway (e.g., as in 9) proposed herein could still
dominate kinetically.
We have also applied the methodology described above to the
first enantioselective synthesis of the naturally occurring fatty acid
(9R,10S)-dihydrosterculic acid (12), a common cyclopropyl fatty
acid of microorganisms and subtropical plants.19 The chiral cyclo-
propene 13 (87% ee), which is readily available from ethyl
diazoacetate and 1-decyne using the enantiomer of catalyst 1
(synthesized starting from (S,S)-diphenylethylenediamine), was
converted to the cis aldehyde 14 by the sequence: (1) catalytic
reduction using 5% Pd-CaCO3 and 1 atm of H2 in EtOAc at 23
°C for 2 h (90%); (2) reduction of COOEt to CH2OH using LiAlH4
in ether at 23 °C for 1 h (78%); and (3) Swern oxidation of CH2OH
to CHO with Me2SO and oxalyl chloride in CH2Cl2 at -78 °C
followed by Et3N and warming to 23 °C (95%). Wittig coupling
of aldehyde 14 with the ylide from 7-triphenylphosphonioheptanoic
acid bromide and 2 equiv of LDA in THF at -78 to 23 °C produced
the unsaturated acid 15 (72%, Z/E ) 4:1), which was reduced by
stirring with H2NNH2 and air in ethanol containing a catalytic
amount of CuSO4 (via diimide, N2H2) to afford (9R,10S)-dihy-
drosterculic acid as a colorless solid, mp 29-30 °C, in 85% yield.
This synthesis is much shorter than a recently published process
(18) For recent reviews of transformations on cyclopropenes, see: (a) Baird,
M. S. Cyclopropanes: Synthesis: From Cyclopropenes. In Houben-Weyl;
Thieme: Stuttgart, 1997; pp 114-255. (b) Nakamura, M.; Isobe, H.;
Nakamura, E. Chem. ReV. 2003, 103, 1295-1326.
(19) (a) Grogan, D. W.; Cronan, J. E., Jr. Microbiol. Mol. Biol. 1997, 61, 429-
441. (b) Stuart, L. J.; Buist, P. H. Tetrahedron: Asymmetry 2004, 15,
401-403.
(20) Coxon, G. D.; Al-Dulayymi, J. R.; Baird, M. S.; Knobl, S.; Roberts, E.;
Minnikin, D. E. Tetrahedron: Asymmetry 2003, 14, 1211-1222.
JA047064K
9
8918 J. AM. CHEM. SOC. VOL. 126, NO. 29, 2004