M. Amat et al. / Tetrahedron Letters 45 (2004) 5355–5358
5357
C6H5
C6H5
O
C6H5
O
2001SGR-0084) is gratefully acknowledged. Thanks are
also due to the Ministry of Education, Culture and
Sport for a fellowship to M.H. and to the Ministry of
Science and Technology for a fellowship to O.B. We
O
O
O
N
O
N
N
OBn
O
O
i, ii
iii
iv
OH
O
O
7
16
17
ꢀ
thank DSM Deretil (Almerıa, Spain) for the generous
gift of (R)-phenylglycinol.
C6H5
O
C6H5
HCl
OH
H
N
O
O
N
N
OH
OH
O
O
v
vi
References and notes
HO
HO
HO
O
OH
OH
18
OH
19
1
1. (a) Bols, M. Acc. Chem. Res. 1998, 31, 1; (b) Iminosugars
1-Deoxy-D-gulonojirimycin
€
as Glycosidase Inhibitors. Nojirimicin and Beyond; Stutz, A.
E., Ed.; Wiley-VCH: Weinheim, 1999.
Scheme 5. Reagents and conditions: (i) BF3Et2O, SMe2, rt, 12 h, 81%;
(ii) MeC(OMe)2Me, p-TsOH, CH2Cl2, rt, 3 h, 75%; (iii) KH, THF,
PhSO2Me, rt, then toluene, reflux, 15 h, 76%; (iv) 2.5% OsO4 t-BuOH,
NMO, MeCN, 72 h, 82%; (v) LiAlH4, THF, rt, 15 h, 90%; (vi) H2,
Pd(OH)2/C, MeOH, HCl, 72 h, 40%.
2. (a) Fleet, G. W. J.; Karpas, A.; Dwek, R. A.; Fellows, L.
E.; Tyms, A. S.; Petursson, S.; Namgoong, S. K.;
Ramsden, N. G.; Smith, P. W.; Son, J. C.; Wilson, F.;
Witty, D. R.; Jacob, G. S.; Rademacher, T. W. FEBS Lett.
1988, 237, 128; (b) Taylor, D. L.; Sunkara, P.; Liu, P. S.;
Kang, M. S.; Bowlin, T. L.; Tyms, A. S. AIDS 1991, 5,
693.
19 and its C-2 epimer, reduction with LiAlH4 took place
with retention of configuration at C-2, stereoselectively
affording piperidine 19 in excellent yield. Finally,
hydrogenolysis under acidic conditions with simulta-
neous hydrolysis of the acetonide ring, led to poly-
hydroxylated piperidine 1 as the hydrochloride.20
3. (a) Nishimura, Y. In Studies in Natural Products Chem-
istry; Atta-ur-Rahman, Ed.; Elsevier Science: B.V.
Amsterdam, 1995; Vol. 16, pp 75–121; (b) Gross, P. E.;
Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer.
Res. 1995, 1, 935.
4. (a) Horii, S.; Fukase, H.; Matsuo, T.; Kameda, Y.; Asano,
N.; Matsui, K. J. Med. Chem. 1986, 29, 1038; (b)
Robinson, K. M.; Begovic, M. E.; Reinhart, B. L.;
Heineke, E. W.; Ducep, J.-B.; Kastner, P. R.; Marshall,
F. N.; Danzin, C. Diabetes 1991, 40, 825.
5. For a review, see: Asano, N. Glycobiology 2003, 13, 93R.
6. (a) Nash, R. J.; Watson, A. A.; Asano, N. In Alkaloids:
Chemical and Biological Perspectives; Pelletier, S. W., Ed.;
Elsevier: Oxford, 1996; Vol. 11, pp 345–376; (b) Elbein, A.
D.; Molyneux, R. J. In Comprehensive Natural Products;
Barton, D., Nakanishi, K., Eds.; Elsevier: New York,
1999; Vol. 3, pp 129–160.
7. Drugs Future 1986, 11, 1039; Drugs Future 1987, 12, 1157.
8. Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe, A. J.
Chem. Rev. 1996, 96, 1195.
Both the 1H and 13C NMR data of 1 hydrochloride
coincided with those previously reported20d;e for 1-
deoxy-gulonojirimycin hydrochloride, whereas the spe-
cific rotation of our synthetic product, [a]2D2 +2.0 (c 0.2,
MeOH), agreed with that reported20d for the hydro-
chloride of this azasugar, [a]589 +2.6 (c 1.6, MeOH).
Kinetic measurements with 1 were performed on b-
galactosidase, a-amylase and a-glucosidase. In our
conditions only a-glucosidase was significantly inhibited
with an IC50 of 0.25 mM. The assay was performed with
Saccharomyces cerevisiae a-glucosidase acting on p-
ꢀ
ꢀ
9. (a) Amat, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.;
Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque,
J. J. Org. Chem. 2000, 65, 3074; (b) Amat, M.; Llor, N.;
Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003,
68, 1919; (c) Amat, M.; Escolano, C.; Lozano, O.; Llor,
N.; Bosch, J. Org. Lett. 2003, 5, 3139; For a review, see:
(d) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56,
9843.
nitrophenyl-a-D-glucopyranoside, a synthetic substrate
analogous for a-glucosidases, which was routinely used
at 1.5 mM concentration for the IC50 standard assays.
Reactions were carried out at pH 6.8 and 37 °C. Under
these conditions the KM for p-nitrophenyl-a-D-gluco-
pyranoside was 0.6 mM, and the Ki for 1, assayed in a
range of concentrations of inhibitor going from 0.025 to
0.25 mM in front of different amounts of substrate
ranging from 0.4 to 1.5 mM, was 0.15 mM. Finally it has
to be underscored that in our conditions the inhibition
of this enzyme by deoxynojirimycin displayed a 5 fold
higher IC50 of 1.25 mM and hence this natural product is
a weaker inhibitor than 1.
10. Amat, M.; Llor, N.; Huguet, M.; Molins, E.; Espinosa, E.;
Bosch, J. Org. Lett. 2001, 3, 3257.
11. 1-Deoxy-L-gulonojirimycin is a potent and selective inhib-
€
itor of L-fucosidases. (a) Legler, G.; Sutz, A. E.; Immich,
H. Carbohydr. Res. 1995, 272, 17; (b) Le Merrer, Y.;
Poitout, L.; Depezay, J.-C.; Dosbaa, I.; Gcoffroy, S.;
Foglietti, M.-J. Bioorg. Med. Chem. 1997, 5, 519.
12. (a) Asano, N.; Ishii, S.; Kizu, H.; Ikeda, K.; Yasuda, K.;
Kato, A.; Martin, O. R.; Fan, J.-Q. Eur. J. Biochem. 2000,
267, 4179; (b) Asano, N.; Yasuda, K.; Kizu, H.; Kato, A.;
Fan, J.-Q.; Nash, R. J.; Fleet, G. W. J.; Molyneux, R. J.
Eur. J. Biochem. 2001, 268, 35; (c) However, the sign and
absolute value of specific rotation of this natural product
are in agreement with the data reported in the literature11b
for the enantiomer.
Taking into account that (S)-phenylglycinol is also
commercially available, the methodology here
reported provides access to azasugars in both enantio-
meric series.
Acknowledgements
ꢀ
13. (a) Amat, M.; Canto, M.; Llor, N.; Ponzo, V.; Perez, M.;
Bosch, J. Angew. Chem., Int. Ed. 2002, 41, 65; (b) Amat,
ꢀ
ꢀ
Financial support from the ‘La Marato de TV3’ foun-
ꢀ
M.; Canto, M.; Llor, N.; Escolano, C.; Molins, E.;
dation, the DGICYT, Spain (project BQU2003-00505),
and the CUR, Generalitat de Catalunya (grant
Espinosa, E.; Bosch, J. J. Org. Chem. 2002, 67, 5343.
14. Oishi, T.; Nagumo, Y.; Hirama, M. Synlett 1997, 980.