7-(2′-Carboxyethyl)guanine in Human LiVer DNA
Chem. Res. Toxicol., Vol. 23, No. 6, 2010 1095
(18) Zatonski, W., Ohshima, H., Przewozniak, K., Drosik, K., Mierzwinska,
J., Krygier, M., Chmielarczyk, W., and Bartsch, H. (1989) Urinary
excretion of N-nitrosamino acids and nitrate by inhabitants of high-
and low-risk areas for stomach cancer in Poland. Int. J. Cancer 44,
823–827.
(19) Forman, D., Al Dabbagh, S., Knight, T., and Doll, R. (1988) Nitrate
exposure and the carcinogenic process. Ann. N.Y. Acad. Sci. 534, 597–
603.
(20) Mirvish, S. S., Ross, A. E., Gold, B., and Drake, N. (1985) In vitro
and in vivo formation of 7-(2′-carboxyethyl)guanine from the liver
carcinogen 1-nitroso-5,6-dihydrouracil and its reactions with water and
methanol. J. Natl. Cancer Inst. 74, 1105–1110.
(21) Solomon, J. J. (1994) DNA Adducts of Lactones, Sultones, Acylating
Agents and Acrylic Compounds, in DNA Adducts: Identification and
Biological Significance (Hemminki, K., Dipple, A., Shuker, D. E. G.,
Kadlubar, F. F., Segerba¨ck, D., and Bartsch, H., Eds.) pp 179-198,
International Agency for Research on Cancer, Lyon, France.
(22) Synold, T., Xi, B., Wuenschell, G. E., Tamae, D., Figarola, J. L.,
Rahbar, S., and Termini, J. (2008) Advanced glycation end products
of DNA: quantification of N2-(1-carboxyethyl)-2′-deoxyguanosine in
biological samples by liquid chromatography electrospray ionization
tandem mass spectrometry. Chem. Res. Toxicol. 21, 2148–2155.
(23) Sturla, S. J., Scott, J., Lao, Y., Hecht, S. S., and Villalta, P. W. (2005)
Mass spectrometric analysis of relative levels of pyridyloxobutylation
adducts formed in the reaction of DNA with a chemically activated
form of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone. Chem. Res. Toxicol. 18, 1048–1055.
(24) Chen, L., Wang, M., Villalta, P. W., and Hecht, S. S. (2007) Liquid
chromatography-electrospray ionization tandem mass spectrometry
analysis of 7-ethylguanine in human liver DNA. Chem. Res. Toxicol.
20, 1498–1502.
In summary, we report the detection of substantial amounts
of 7-CEGua in human hepatic DNA. The related adduct,
7-CMGua, was not detected. These results provide some new
insights on possible mechanisms of DNA damage in humans.
While our original hypothesis involved the possible production
of these adducts from N-nitroso compounds, our results suggest
that acrylic acid may be a more likely precursor.
Acknowledgment. This study was supported by grant CA-
85702 from the National Cancer Institute. We thank Li Chen
for her contributions to this study and Bob Carlson for editorial
assistance.
References
(1) Delaney, J. C., and Essigmann, J. M. (2008) Biological properties of
single chemical-DNA adducts: a twenty year perspective. Chem. Res.
Toxicol. 21, 232–252.
(2) Pfeifer, G. P., Denissenko, M. F., Olivier, M., Tretyakova, N., Hecht,
S. S., and Hainaut, P. (2002) Tobacco smoke carcinogens, DNA
damage and p53 mutations in smoking-associated cancers. Oncogene
21, 7435–7451.
(3) Ahrendt, S. A., Decker, P. A., Alawi, E. A., Zhu Yr, Y. R., Sanchez-
Cespedes, M., Yang, S. C., Haasler, G. B., Kajdacsy-Balla, A.,
Demeure, M. J., and Sidransky, D. (2001) Cigarette smoking is
strongly associated with mutation of the K-ras gene in patients with
primary adenocarcinoma of the lung. Cancer 92, 1525–1530.
(4) Johnson, L., Mercer, K., Greenbaum, D., Bronson, R. T., Crowley,
D., Tuveson, D. A., and Jacks, T. (2001) Somatic activation of the
K-ras oncogene causes early onset lung cancer in mice. Nature 410,
1111–1116.
(25) Chung, F. L., Wang, M., and Hecht, S. S. (1989) Detection of exocyclic
guanine adducts in hydrolysates of hepatic DNA of rats treated with
N-nitrosopyrrolidine and in calf thymus DNA reacted with R-acetoxy-
N-nitrosopyrrolidine. Cancer Res. 49, 2034–2041.
(5) International Agency for Research on Cancer. (1978) Some N-nitroso
Compounds, in IARC Monographs on the EValuation of the Carci-
nogenic Risk of Chemicals to Humans, Vol. 17, pp 83-124, IARC,
Lyon, France.
(6) Tricker, A. R. (1997) N-nitroso compounds and man: sources of
exposure, endogenous formation and occurrence in body fluids. Eur.
J. Cancer PreV. 6, 226–268.
(7) U.S. Department of Health and Human Services. (2002) 10th Report
on Carcinogens.
(26) Patel, J. M., Wood, J. C., and Leibman, K. C. (1980) The biotrans-
formation of allyl alcohol and acrolein in rat liver and lung preparation.
Drug Metab. Dispos. 8, 305–308.
(27) Linhart, I., Frantik, E., Vodickova, L., Vosmanska, M., Smejkal, J.,
and Mitera, J. (1996) Biotransformation of acrolein in rat: excretion
of mercapturic acids after inhalation and intraperitoneal injection.
Toxicol. Appl. Pharmacol. 136, 155–160.
(28) Parent, R. A., Paust, D. E., Schrimpf, M. K., Talaat, R. E., Doane,
R. A., Caravello, H. E., Lee, S. J., and Sharp, D. E. (1998) Metabolism
and distribution of [2,3-14C]acrolein in Sprague-Dawley rats. II.
Identification of urinary and fecal metabolites. Toxicol. Sci. 43, 110–
120.
(29) Winter, S. M., Weber, G. L., Gooley, P. R., MacKenzie, N. E., and
Sipes, I. G. (1992) Identification and comparison of the urinary
metabolites of [1,2,3-13C3]acrylic acid and [1,2,3-13C3]propionic acid
in the rat by homonuclear 13C nuclear magnetic resonance spectros-
copy. Drug Metab. Dispos. 20, 665–672.
(30) Chung, F. L., Zhang, L., Ocando, J. E., and Nath, R. G. (1999) Role
of 1,N2-Propanodeoxyguanosine Adducts As Endogenous DNA Le-
sions in Rodents and Humans, in Exocyclic DNA Adducts in Mu-
tagenesis and Carcinogenesis (Singer, B., and Bartsch, H., Eds.), pp
45-54, International Agency for Research on Cancer, Lyon, France.
(31) International Agency for Research on Cancer. (1995) Acrolein, in IARC
Monographs on the EValuation of Carcinogenic Risks to Humans, Vol.
63, pp 337-372, IARC, Lyon, France.
(32) Chung, F. L., Young, R., and Hecht, S. S. (1984) Formation of cyclic
1,N2-propanodeoxyguanosine adducts in DNA upon reaction with
acrolein or crotonaldehyde. Cancer Res. 44, 990–995.
(33) Pan, J., Davis, W., Trushin, N., Amin, S., Nath, R. G., Salem, N., Jr.,
and Chung, F. L. (2006) A solid-phase extraction/high-performance
liquid chromatography-based 32P-postlabeling method for detection
of cyclic 1,N2-propanodeoxyguanosine adducts derived from enals.
Anal. Biochem. 348, 15–23.
(8) Ohshima, H., Bereziat, J. C., and Bartsch, H. (1982) Monitoring
N-nitrosamino acids excreted in the urine and feces of rats as an index
for endogenous nitrosation. Carcinogenesis 3, 115–120.
(9) Preussmann, R., and Stewart, B. W. (1984) N-Nitroso Carcinogens,
in Chemical Carcinogens, 2nd ed. (Searle, C. E., Ed.), ACS Mono-
graph 182, Vol. 2, pp 643-828, American Chemical Society,
Washington, DC.
(10) Zurlo, J., Curphey, T. J., Hiley, R., and Longnecker, D. S. (1982)
Identification of 7-carboxymethylguanine in DNA from pancreatic
acinar cells exposed to azaserine. Cancer Res. 42, 1286–1288.
(11) Shuker, D. E., and Margison, G. P. (1997) Nitrosated glycine
derivatives as a potential source of O6- methylguanine in DNA. Cancer
Res. 57, 366–369.
(12) Harrison, K. L., Jukes, R., Cooper, D. P., and Shuker, D. E. G. (1999)
Detection of concomitant formation of O6-carboxymethyl- and O6-
methyl-2′-deoxyguanosine in DNA exposed to nitrosated glycine
derivatives using a combined immunoaffinity/HPLC method. Chem.
Res. Toxicol. 12, 106–111.
(13) Cupid, B. C., Zeng, Z., Singh, R., and Shuker, D. E. (2004) Detection
of O6-carboxymethyl-2′-deoxyguanosine in DNA following reaction
of nitric oxide with glycine and in human blood DNA using a
quantitative immunoslot blot assay. Chem. Res. Toxicol. 17, 294–300.
(14) Lewin, M. H., Bailey, N., Bandaletova, T., Bowman, R., Cross, A. J.,
Pollock, J., Shuker, D. E., and Bingham, S. A. (2006) Red meat
enhances the colonic formation of the DNA adduct O6-carboxymethyl
guanine: implications for colorectal cancer risk. Cancer Res. 66, 1859–
1865.
(34) Nath, R. G., Ocando, J. E., and Chung, F. L. (1996) Detection of
1,N2-propanodeoxyguanosine adducts as potential endogenous DNA
lesions in rodent and human tissues. Cancer Res. 56, 452–456.
(35) Nath, R. G., Ocando, J. E., Guttenplan, J. B., and Chung, F. L. (1998)
1,N2-Propanodeoxyguanosine adducts: Potential new biomarkers of
smoking-induced DNA damage in human oral tissue. Cancer Res. 58,
581–584.
(15) Gottschalg, E., Scott, G. B., Burns, P. A., and Shuker, D. E. (2007)
Potassium diazoacetate-induced p53 mutations in Vitro in relation to
formation of O6-carboxymethyl- and O6-methyl-2′-deoxyguanosine
DNA adducts: relevance for gastrointestinal cancer. Carcinogenesis
28, 356–362.
(36) Emami, A., Dyba, M., Cheema, A. K., Pan, J., Nath, R. G., and Chung,
F. L. (2008) Detection of the acrolein-derived cyclic DNA adduct by
a quantitative 32P-postlabeling/solid-phase extraction/HPLC method:
blocking its artifact formation with glutathione. Anal. Biochem. 374,
163–172.
(37) Chung, F. L., Nath, R. G., Nagao, M., Nishikawa, A., Zhou, G. D.,
and Randerath, K. (1999) Endogenous formation and significance of
(16) Rivenson, A., Djordjevic, M. V., Amin, S., and Hoffmann, D. (1989)
Bioassay in A/J mice of some N-nitrosamines. Cancer Lett. 47, 111–
114.
(17) International Agency for Research on Cancer. (2007) Smokeless
Tobacco and Tobacco-Specific Nitrosamines, in IARC Monographs
on the EValuation of Carcinogenic Risks to Humans, Vol. 89, pp 41-
417, IARC, Lyon, France.