Letters
The introduction of an ether or a thioether feature in
Journal of Medicinal Chemistry, 2004, Vol. 47, No. 25 6127
(5) Ke, H. Z.; Shen, V. W.; Qi, H.; Crawford, D. T.; Wu, D. D.; Liang,
X. G.; Chidsey-Frink, K. L.; Pirie, C. M.; Simmons, H. A.;
Thompson, D. D. Prostaglandin E2 Increases Bone Strength in
Intact Rats and in Ovariectomized Rats with Established
Osteopenia. Bone 1998, 23, 249-255.
(6) (a) Cattral, M. S.; Altraif, I.; Greig, P. D.; Blendis, L.; Levy, G.
A. Toxic Effects of Intravenous and Oral Prostaglandin E
Therapy in Patients with Liver Disease. Am. J. Med. 1994, 97,
369-373. (b) Sonmez, A. S.; Birincioglu, M.; Kaya Ozer, M.;
Kutlu, R.; Chuong, C. J. Effects of Misoprostol on Bone Loss in
Ovariectomized Rats. Prostagl. Lipid Mediators 1999, 57, 113-
118.
the R-chain of 8-aza-11-deoxyPGE1 leads to compounds
of slower clearance from the circulation of rat. The
thioether 9 presents favorable EP4 receptor activity.
However, it poses a short t1/2 and it primarily degrades
to the poorly active dinor acid 8 in vivo (rat).9b Ethers
10 and 11 displayed disappointing in vivo t1/2 compared
to the t1/2 of 3. The extent of protein binding for 10 was
estimated to be much less than 3, therefore decreasing
Vâ and having a deleterious effect toward the in vivo
t1/2 of 10.
(7) Collins, P. W. Misoprostol: Discovery, Development, and Clinical
Applications. Med. Res. Rev. 1990, 10, 149-172.
In summary, aryl acids can be prepared with two-
carbon linkage to the nitrogen of the 2-pyrrolidinone
template to produce ligands of mixed subtype selectivity
for the EP2 and EP4 prostanoid receptors or greater than
500-fold selectivity for the EP4 receptor as judged by
affinity measurements. Significantly, benzoic acid 16
was predicted to be active at the EP4 subtype based on
a pharmacophore model. This differs from the classical
modified PG upper side chains prior to identification of
the EP4 receptor. Acid 16 displays an improved i.v.
clearance rate compared to 3, and the “13,14-dihydro
ligand” 17 illustrates the effect of the ω-chain alkene
on in vivo PG metabolism.
(8) Suda, M.; Tanaka, K.; Natsui, K.; Ushi, T.; Tanaka, I.; Fuku-
shima, M.; Shigeno, C.; Konishi, J.; Narumiya, S.; Ichikawa, A.;
Nakao, K. Prostaglandin E Receptor Subtypes in Mouse Osteo-
blastic Cell Line. Endocrinology 1996, 137, 1698-1705.
(9) (a) Elworthy, T. R.; Kertesz, D. J.; Kim, W.; Roepel, M. G.;
Quattrocchio-Setti, L.; Smith, D. B.; Tracy, J. L.; Chow, A.; Li,
F.; Brill, E. R.; Lach, L. K.; McGee, D.; Yang, D. S.; Chiou, S.-S.
Lactams as EP4 Prostanoid Receptor Subtype Agonists. Part 1.
2-Pyrrolidinones-Stereochemical and Lower Side-Chain Opti-
mization. Bioorg. Med. Chem. Lett. 2004, 14, 1655-1659. (b)
Elworthy, T. R.; Harris, J. R.; Hendricks, R. T.; Mirzadegan, T.;
Quattrocchio-Setti, L.; Walker, K. A. M.; Yee, C.; Brill, E. R.;
Chiou, S.-S.; Lach, L. K.; Chu, F.; Huang, J. Lactams as EP4
Prostanoid Receptor Subtype Selective Agonists. Part 2. Prepa-
ration and Characterization of Longer-Acting Agonists. Pre-
sented at the 29th National Medicinal Chemistry Symposium
of the American Chemical Society, Madison, Wisconsin, June
27 through July 1, 2004; Abstract 72.
11-Deoxylactam prostanoids undergo prostaglandin-
like metabolism in vivo. The processes of â-oxidation (in
mitochondria), 15-dehydrogenation (likely in the lung),
and 13,14-reduction have all been observed for lactam
3.
(10) Saijo, S.; Wada, M.; Himizu, J.-I.; Ishida, A. Heterocyclic
Prostanglandins. V. Synthesis of (12R,15S)-(-)-11-Deoxy-8-aza-
prostaglandin E1 and Related Compounds. Chem. Pharm. Bull.
1980, 28, 1449-1458.
(11) Jones, J. H.; Holtz, W. J.; Bicking, J. B.; Cragoe, E. J., Jr.;
Mandel, L. R.; Kuehl, F. A., Jr. 11,12-Secoprostanoids. 4. 7-(N-
Alkylmethanesulfonamido)heptanoic acids. J. Med. Chem. 1977,
20, 1299-1304.
(12) Adaikan, P. G.; Karim, S. M. M. Effects of some prostaglandin
E1 analogues on guinea pig and human respiratory tract.
Prostaglandins 1979, 18, 787-791.
(13) Tani, K.; Naganawa, A.; Ishida, A.; Egashira, H.; Sagawa, K.;
Harada, H.; Ogawa, M.; Maruyama, T.; Ohuchida, S.; Nakai,
H.; Kondo, K.; Toda, M. Design and Synthesis of a Highly
Selective EP2-Receptor Agonist. Bioorg. Med. Chem. Lett. 2001,
11, 2025-2029.
(14) Fujita, M.; Kitagawa, O.; Yamada, Y.; Izawa, H.; Hasegawa, H.;
Taguchi, T. Synthesis of Optically Active 5-Substituted-2-
pyrrolidinone Derivatives Having Atropisomeric Structure and
3,5-Cis-Selective Reaction of Their Enolates with Electrophiles.
J. Org. Chem. 2000, 65, 1108-1114.
(15) Varney, M. D.; Palmer, C. L.; Romines, W. H., III; Boritzki, T.;
Margosiak, S. A.; Almassy, R.; Janson, C. A.; Bartlett, C.;
Howland, E. J.; Ferre, R. Protein Structure-Based Design,
Synthesis, and Biological Evaluation of 5-Thia-2,6-diamino-
4(3H)-oxopyrimidines: Potent Inhibitors of Glycinamide Ribo-
nucleotide Transformylase with Potent Cell Growth Inhibition.
J. Med Chem. 1997, 40, 2502-2524. Methyl 5-(2-bromoethyl)-
thiophene 2-carboxylate was converted to methyl-5-(2-aminoeth-
yl)thiophene 2-carboxylate by the action of NaN3 and then Ph3P
in aqueous THF.
(16) Maruyama, T.; Asada, M.; Shiraishi, T.; Ishida, A.; Yoshida, H.;
Maruyama, T.; Ohuchida, S.; Nakai, H.; Kondo, K.; Toda, M.
Design and Synthesis of a Selective EP4-Receptor Agonist. Part
2: 3,7-DithiaPG1 Derivatives with High Selectivity. Bioorg. Med.
Chem. 2002, 10, 989-1008.
Acknowledgment. We are grateful to Dr. J. M.
Muchowski, Dr. E. B. Sjogren, and Prof. E. J. Corey for
their insights and to Dr. N. Illangasekare for his NMR
expertise. We are also grateful to the staff of Analytical
Chemistry and Laboratory Animal Technology depart-
ments at Roche Palo Alto for their assistance in char-
acterizing the compounds described herein.
Supporting Information Available: Detailed experi-
mental information for the compounds prepared according
Schemes 1 and 2 and for the protocol for rat pharmacokinetic
analysis. This material is available free of charge via the
References
(1) Rodan, G. A.; Martin, T. J. Therapeutic Approaches to Bone
Diseases. Science 2000, 289, 1508-1514.
(2) Reeve, J. PTH: A Future Role in the Management of Osteoporo-
sis? J. Bone Miner. Res. 1996, 11, 440-445.
(3) Vickery, B. H.; Avnur, Z.; Cheng, Y.; Chiou, S.-S.; Leaffer, D.;
Caulfield, J. P.; Kimmel, D. B.; Ho, T.; Krstenansky, J. L. RS-
66271, a C-Terminally Substituted Analog of Human Parathy-
roid Hormone Related Protein (1-34), Increases Trabecular and
Cortical Bone in Ovariectomized, Osteopenic Rats. J. Bone
Miner. Res. 1996, 11, 1943-1951.
(4) Body, J.-J.; Gaich, G. A.; Scheele, W. H.; Kulkarni, P. M.; Miller,
P. D.; Peretz, A.; Dore, R. K.; Correa-Rotter, R.; Papaioannou,
A.; Cumming, D. C.; Hodsman, A. B. A Randomized Double-
Blind Trial To Compare the Efficacy of Teriparatide [Recombi-
nant Human Parathyroid Hormone (1-34)] with Alendronate in
Postmenopausal Women with Osteoporosis. J. Clin. Endocrinol.
Metab. 2002, 87, 4528-4535.
JM049290A