N. B. Kondekar et al. / Tetrahedron Letters 45 (2004) 5477–5479
5479
6. (a) Umezawa, H.;Aoyagi, T.;Morishima, H.;Matsuzaki,
common intermediate 5. The cleavage of the N-acetyl
group of 5 to the free amine was accomplished using
0.5 M HCl in methanol under reflux with concomitant
transesterification to afford 11 in excellent yield. N- and
O-benzylation of 11 was followed by base hydrolysis of
the ester to the corresponding acid 13 in good yield. For
one carbon homologation of the acid 13 to 15, we at-
tempted the following sequence. Acid 13 was first con-
verted into a mixed anhydride and subsequently treated
with excess of diazomethane to furnish the diazo com-
pound 1416 in moderate yield. Further treatment with
silver oxide resulted in the desired acid 15 via Wolff
rearrangement. Debenzylation of 15 led to the forma-
tion of the lactam 16, which on ring opening with
concd HCl furnished the target compound 2 in 73%
M.;Hamada, M.;Takeuchi, T. J. Antibiot. 1970, 23, 259–
265;(b) Omura, S.;Imamura, N.;Kawakita, N.;Mori, Y.;
Yamazaki, Y.;Masuma, R.;Takahashi, Y.;Tanaka, H.;
Huang, L.;Woodruff, H. J. Antibiot. 1986, 39, 1079–1092.
7. Moore, M. L.;Bryan, W. M.;Fakhury, S. A.;Magaard,
V. W.;Huffan, W. F.;Dayton, B. D.;Meek, T. K.;
Hyland, L. J.;Dreyer, G. B.;Metcalf, B. W.;Gorniak, J.
G.;Debouck, C. Biochem. Biophys. Res. Commun. 1989,
159, 420–425.
8. (a) Tao, J.;Hoffman, R. V. J. Org. Chem. 1997, 67, 6240–
6244;(b) Ghosh, A. K.;Fidanze, S. J. Org. Chem. 1998,
63, 6146–6152, and references cited therein.
9. (a) Reetz, M. T.;Drewes, M. W.;Matthews, B. R.;
Lennick, K. J. J. Chem. Soc., Chem. Commun. 1989, 1474–
1475;(b) Reetz, M. T.;Drewes, M. W.;Schmitz, A.
Angew. Chem., Int. Ed. Engl. 1987, 26, 1141–1143;(c)
Gennari, C.;Pain, G.;Moresca, D. J. J. Org. Chem. 1995,
60, 6248–6249.
20
20
yield {½a )22.3 (c 0.36, H2O), lit.17 ½a )24.0 (c 0.44,
D
D
H2O)}. The physical and spectroscopic data were in full
agreement with the literature.17
10. Evans, D. A.;Bartroli, J.;Shih, T. L. J. Am. Chem. Soc.
1981, 103, 2127–2129.
In conclusion, enantioselective syntheses of lactone 1
and AHPPA 2 have been accomplished from a common
intermediate 5 for the first time utilising Sharpless cat-
alytic aminohydroxylation as the key step. A short
reaction sequence and high overall yield of the target
compounds render our strategy a good alternative to the
known methods.
11. (a) Fernandes, R. A.;Kumar, P. Tetrahedron: Asymmetry
1999, 10, 4797–4802;(b) Fernandes, R. A.;Kumar, P. Eur.
J. Org. Chem. 2000, 3447–3449;(c) Fernandes, R. A.;
Kumar, P. Tetrahedron Lett. 2000, 41, 10309–10312;(d)
Pandey, R. K.;Fernandes, R. A.;Kumar, P. Tetrahedron
Lett. 2002, 43, 4425–4426;(e) Naidu, S. V.;Kumar, P.
Tetrahedron Lett. 2003, 44, 1035–1037;(f) Kandula, S. V.;
Kumar, P. Tetrahedron Lett. 2003, 44, 1957–1958;(g)
Gupta, P.;Fernandes, R. A.;Kumar, P. Tetrahedron Lett.
2003, 44, 4231–4232;(h) Pandey, R. K.;Upadhyay, P. K.;
Kumar, P. Tetrahedron Lett. 2003, 44, 6245–6246.
12. (a) Li, G.;Chang, H. T.;Sharpless, K. B. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 451–454;For a review on the
Sharpless asymmetric aminohydroxylation, see: (b)
Bodkin, J. A.;McLeod, M. D. J. Chem. Soc., Perkin
Trans. 1 2002, 2733–2746.
Acknowledgements
N.B.K. and S.V.K. thank CSIR, New Delhi for research
fellowships. We are grateful to Dr. M. K Gurjar, Head,
Organic Chemistry: Technology Division for his support
and encouragement. This is NCL communication No
6662.
13. Oliveto, E. P.;Gerold, C. Org. Synth. Coll. Vol. IV, 1963,
104.
14. During the column purification of 5, the corresponding
dihydroxy compound (12%) was also isolated as side
product.
1
15. The regioisomeric ratio of 5 was determined based on H
NMR spectra and the enantiomeric excess (ee) was
calculated using Mosher analysis by converting ester 7
into the the corresponding alcohol and then derivatising it
References and notes
1. Sandler, M.;Smith, H. J. Design of Enzyme Inhibitors as
Drugs;Oxford: Oxford, UK, 1989.
as the Mosher ester. The ee was found to be 89%. Spectral
20
D
3390–3360, 2983, 2361, 1738, 1657; H NMR (500 MHz,
data 5: ½a )56.08 (c 0.8, CHCl3) IR (CHCl3, cmÀ1):
1
2. (a) Barre-Sinoussi, F.;Chermann, J. C.;Rey, F.;Nugeyre,
M. T.;Chamaret, S.;Gruest, J.;Dauguet, C.;Axler-Blin,
C.;Vezinet-Brun, F.;Rouzioux, C.;Rozenbaum, W.;
Montagnier, L. Science 1983, 220, 868–871;(b) Gallo, R.
C.;Salahuddin, S. Z.;Popovic, M.;Shearer, M.;Kaplan,
M.;Haynes, B. F.;Palker, T. J.;Redfield, R.;Oleske, J.;
Safai, B.;White, G.;Foster, P.;Markham, P. D. Science
1984, 224, 500–503.
3. (a) Gait, M. J.;Karn, J. Tibtech. 1995, 13, 430–438;(b)
Wiodawer, A.;Erickson, J. W. Ann. Rev. Biochem. 1993,
62, 543–585;(c) Volker, E. J. J. Chem. Educ. 1993, 70, 3–9;
(d) Kempf, D. J.;Sham, S. L. Curr. Pharm. Des. 1996, 2,
225–246.
4. (a) Katz, R. A.;Skalka, A. M. Ann. Rev. Biochem. 1994,
63, 133–173;(b) Huff, R. J. J. Med. Chem. 1991, 34, 2305–
2314, and references cited therein.
5. Williams, R. M. In Biologically Active Peptides: Design,
Synthesis and Utilisation;Williams, W. V.;Weiner, D. B.
Eds.; Technomic;Lancaster, 1993;Vol. 1, p 187.
CDCl3): d 1.26–1.28 (t, J ¼ 7:2 Hz, 3H), 2.12 (s, 3H), 2.85–
2.97 (m, 2H), 4.17–4.22 (q, J ¼ 6:8 Hz, 2H), 4.35–4.39 (m,
1H), 4.72–4.74 (dd, J ¼ 9:1, J ¼ 1:9 Hz, 1H), 6.48–6.50 (d,
J ¼ 9:1 Hz, 1H), 7.22–7.34 (m, 5H), 13C NMR (50 MHz,
CDCl3): d 14.01, 22.89, 37.87, 40.44, 52.83, 55.88, 61.56,
62.05, 72.73, 126.69, 128.49, 137.28, 170.94. GC–MS: 266
(M+1).
20
16. Spectral data 14: ½a )2.87 (c 1.60, CHCl3) IR (neat,
D
cmÀ1): 2964, 2361, 2106, 1813, 1749, 1680; 1H NMR
(500 MHz, CDCl3): d 2.9–3.04 (t, J ¼ 11:5 Hz, 1H), 3.20–
3.26 (m, 1H), 3.57–3.59 (d, J ¼ 12:8 Hz, 2H), 4.13–4.16 (d,
J ¼ 13:3 Hz, 2H), 4.22–4.31 (m, 2H), 4.74–4.77 (m, 2H),
5.36 (s, 1H), 7.2–7.44 (m, 20H); 13C NMR (125 MHz,
CDCl3): d 14.24, 55.17, 64.67, 126.53, 127.09, 128.13,
128.56, 128.68, 128.82, 128.99, 129.25, 139.88;GC–MS:
490 (M+1).
17. Rich, D. H.;Sun, E. T. O. J. Med. Chem. 1980, 23,
27–33.