1688
V. Recuero et al. / Tetrahedron: Asymmetry 19 (2008) 1684–1688
4.3.1. (+)-(3S,4S)-3,4-Diacetoxytetrahydrofuran, (+)-(3S,4S)-3.
Determination of the ee by GC analysis
4.5. General procedure for the enzymatic alkoxycarbonylations
of cis-3,4-dihydroxytetrahydrofuran
RtbDEXse, 70 °C (5 min), 3 °C/min, 200 °C (10 min). tR (3S,4S)
30.0 min, ee >99%.
The lipase (100 mg) and the corresponding carbonate (5 equiv)
were added to a solution of cis-5 (100 mg, 1 equiv) in 1,4-dioxane
(4 mL). The mixture was shaken at the selected temperature and
250 r.p.m. in a rotatory shaker. The progress of the reaction was
monitored by TLC. Once the reaction was finished, the enzyme
was removed by filtration, washed with 1,4-dioxane, and the sol-
vent was evaporated under reduced pressure. The crude residue
was purified by flash chromatography on silica gel to afford the
corresponding monoalkoxycarbonyl derivatives cis-7b–g.
4.3.2. (ꢁ)-(3R,4R)-3-Acetoxy-4-hydroxytetrahydrofuran, (ꢁ)-
(3R,4R)-4
White solid. Mp 37–38 °C; 1H NMR (CDCl3, 300 MHz): d 2.22 (s,
3H), 3.56 (br s, OH), 3.79–3.90 (m, 2H), 4.01–4.09 (m, 2H), 4.24–
4.32 (m, 2H); 13C NMR (CDCl3, 100.5 MHz): d 21.31 (CH3), 72.73
(CH2), 72.98 (CH2), 77.35 (CH), 81.92 (CH), 170.28 (CO); IR (KBr,
cmꢁ1) 3122, 1743; MS (ESI+ m/z): 147 [(M+H)+, 100].
4.5.1. (ꢁ)-(3S,4R)-3-Ethoxycarbonyloxy-4-
4.3.3. Determination of the ee by GC analysis
hydroxytetrehydrofuran, (ꢁ)-(3S,4R)-7d
In order to determinate its enantiomeric excess, (ꢁ)-(3R,4R)-4
was converted into the diacetyl derivative (ꢁ)-(3R,4R)-3 and ana-
lyzed by GC. RtbDEXse, 70 °C (5 min), 3 °C/min, 200 °C (10 min).
tR (3R,4R) 29.8 min, ee >99%.
White solid. Mp 39–41 °C. 1H NMR (CDCl3, 300 MHz): d 1.42 (t,
3H), 2.29 (c, 2H), 3.57 (br s, OH), 3.77–3.87 (m, 2H), 4.01–4.13 (m,
2H), 4.19–4.31 (m, 2H). 13C NMR (CDCl3, 100.5 MHz): d 11.52
(CH3), 28.11 (CH2), 72. 91 (CH2), 73.06 (CH2), 77.15 (CH), 82.88
(CH), 172.98 (CO); IR (KBr, cmꢁ1) 1138.5, 1422.1, 1744.8; MS
(ESI+ m/z): 199 [(M+Na)+, 40].
4.4. General procedure for the enzymatic acylation
The reaction mixture containing the corresponding substrate
(0.15 mmol), the corresponding acylating agent (0.75 mmol),
the lipase (100 mg) and the corresponding organic solvent (4 mL)
was shaken at 30 °C and 250 rpm in an orbital shaker. The progress
of the reaction was monitored by TLC (hexane/EtOAc 7:3) until
the achievement of the required conversion. Then, the enzyme
was removed by filtration and washed with CHCl3 (3 ꢂ 5 mL).
The solvent was removed under reduced pressure and the crude
residue was purified by flash chromatography on silica gel
(hexane/EtOAc 7:3), to afford the corresponding monoacylated
derivative.
4.5.2. Determination of the ee by HPLC analysis
Chiralpack IA, 20 °C, hexane/2-propanol (80:20), UV 210 nm,
0.5 mL minꢁ1, tR 15,69 min (minor); tR 17.48 min (major). ½a D25
¼
ꢃ
ꢁ4:6 (c 0.25, HCCl3), ee = 78%.
Acknowledgments
This work was supported by the Principado de Asturias (project
PC06-019). We express our appreciation to Novo Nordisk Co. for
the generous gift of the lipase CAL-B.
References
4.4.1. (ꢁ)-(3S,4R)-3-Benzoyloxy-4-hydroxytetrahydrofuran,
(ꢁ)-(3S,4R)-8d
1. See for example: Aghmiz, M. A.; Aghmiz, A.; Masdeu-Bulto, Y.; Claver, C.;
Castillon, S. J. Org. Chem. 2004, 69, 7502–7510.
2. See for example: (a) Wang, W.; Jin, H.; Fuselli, N.; Mansour, T. S. Bioorg. Med.
Chem. Lett. 1997, 2567–2572; (b) Tatani, K.; Shuto, S.; Ueno, Y.; Matsuda, A.
Tetrahedron Lett. 1998, 39, 5065–5068; (c) Hwang, D. J.; Kim, S. N.; Choi, J. H.;
Lee, Y. S. Bioorg. Med. Chem. Lett. 2001, 1429–1437.
White solid. Mp 48–49 °C; 1H NMR (CDCl3, 300 MHz): d 2.42 (br
s, OH), 3.78–3.98 (m, 1H), 4.00–4.20, (m, 3H), 4.57–4.59 (m, 1H),
5.36–5.41 (m, 1H), 7.43–7.59 (m, 3H), 8.05–8.08 (d, 2H,
J
7.17 Hz), 13C NMR (CDCl3, 100.5 MHz): d 70.93 (CH2), 71.47
(CH2), 72.72 (CH), 74.57 (CH), 128.86 (2CH), 129.61 (2CH), 130.08
(2CH), 133.86 (C), 166.67 (CO); IR (KBr, cmꢁ1) 1120.9, 1274.5,
1451.5, 1710.0, 3428.4; MS (ESI+ m/z): 209 [(M+H)+, 100].
3. (a) Dulphy, H.; Gras, J.-L.; Lejon, T. Tetrahedron 1996, 52, 8517–8524; (b)
_
Skarzewski, J.; Gupta, A. Tetrahedron: Asymmetry 1997, 8, 1861–1867.
4. Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura,
Y. Tetrahedron Lett. 2006, 47, 8453–8456.
5. (a) Zhao, L.; Han, B.; Huang, Z.; Miller, M.; Huang, H.; Malashock, D. S.; Zhu, Z.;
Milan, A.; Robertson, D. E.; Weiner, D. P.; Burk, M. J. J. Am. Chem. Soc. 2004, 126,
11156–11157; (b) Botes, A. L.; Lotter, J. WO 2005100578 A2, CAN 143:438591.
6. Seemayer, R.; Schneider, M. P. J. Chem. Soc., Perkin Trans. 1 1990, 2359–2360.
7. Bayston, D. J.; Casson, S.; Lovell, J. M.; Scott, R. M. U.S. Patent 6,140,516, CAN
133:335151.
4.4.2. Determination of the ee by HPLC analysis
Chiralpack IA, 20 °C, hexane/2-propanol (80:20), UV 210 nm,
0.5 mL minꢁ1, tR 13.43 min (minor); tR 15.23 min (major). ½a D25
¼
ꢃ
8. Xue, F.; Seto, C. T. Bioorg. Med. Chem. 2006, 14, 8467–8487.
9. Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294.
ꢁ12 (c 0.03, HCCl3), ee = 83%.