Acetals play a key role in nature11 and chemistry;12 acetal
allylation is a useful carbon-carbon bond formation that can
provide valuable homoallyl ethers.13 Typically, this chal-
lenging C-C coupling proceeds via Lewis acid activation
to form an oxocarbenium ion that can react with nucleophilic
allylsilanes.14 Lewis or Brønsted acid-catalyzed variants15
have been developed,16 but only some catalytic methods were
found to be truly effective, practical, and general. Allylbo-
ronates are, in the absence of transition metals,8 unreactive
toward sp3-type electrophiles (noncarbonyls); these boron
reagents have been neglected, although they may offer
significant advantages such as easier access, superior stability,
and unique reactivity, and selectivity. In the quest for new
electrophiles compatible with our InI catalysis, we envisioned
acetals for challenging nucleophilic substitution with allyl-
boronates, an unprecedented process that would require
Lewis acid and Lewis base activation (Scheme 1). We sought
use of indium(I) iodide6c,7c,d or other halides proved to be
ineffective (Table 1, entries 1-3). To our surprise, when
Table 1. Screening of Lewis Acid Catalysts
entry Lewis acid catalyst (mol %) solvent conversiona (%)
1
2
3
4
5
6
toluene
toluene
toluene
toluene
toluene
nr
trace
nr
InII (20)
InIBr (20) or InICl (20)
InIOTf (20)
>99 (95)b
nd (12)b
trace
InIII(OTf)3 (20)
GaIII(OTf)3 or AlIII(OTf)3 or toluene
CuIOTf (20)
7
8
9
10
11
12
13
14
ScIII(OTf)3 (20)
CuII(OTf)2 (20)
AgIOTf or ZnII(OTf)2 (20)
InIOTf (5)
toluene
toluene
toluene
toluene
n-hexane
DCM
2
5
nr
>99
>99
>95
20
Scheme 1. Nucleophilic Substitution with an Allylboronate?
InIOTf (5)
InIOTf (5)
InIOTf (5)
THF
toluene
InIOTf (1)
>99 (91)b
a Conversions of 1a to 3a determined by 1H NMR spectroscopic analysis
of aliquots of the reaction mixtures. b Isolated yields of homoallyl ether 3a
after purification on silica gel (PTLC). nr ) no reaction; nd ) not determined
(due to the formation of byproduct).
a single catalyst capable of activating both reagents and report
here our preliminary results.
In initial experiments, the uncatalyzed reaction between
acetal 1a and allylboronate 2 did not occur, and catalytic
InIOTf17 (20 mol %) was employed, this C-C bond
formation proceeded smoothly to provide homoallyl ether
3a in 95% yield (entry 4). Strikingly, various other metal
triflates including InIII(OTf)3 were found to be inefficient
(entries 5-9). This indicated that, contrary to classic allyl-
silanes, a strong Lewis acid, for the activation of 1a, is not
sufficient to promote this C-C coupling with 2. Rather, the
ability to activate both 1a and 2 seems to be crucial. Note
that (1) toluene was shown to be the best solvent of those
examined (entries 10-13) and (2) the InI catalyst loading
could be reduced to 1 mol % (entry 14; 91% yield).
Next, we investigated the substrate scope (Figure 1). This
reaction proceeded smoothly with acyclic or cyclic aromatic,
heteroaromatic, and aliphatic acetals or ketals. It is noted
that readily cleavable ethers such as product 3b (R ) Bn)
are accessible and that the mild conditions tolerate reactive
functional groups such as unprotected O-H and aliphatic
C-Hal bonds (products 3c, 3s, and 3t), which reveals the
high appeal of this InI catalysis for synthesis.
(9) Recent review on the use of indium for synthesis: Auge´, J.; Lubin-
Germain, N.; Uziel, J. Synthesis 2007, 1739.
(10) Selected stoichiometric examples for indiumI-mediated C-C bond
formation: (a) Araki, S.; Ito, H.; Katsumura, N.; Butsugan, Y. J. Organomet.
Chem. 1989, 369, 291. (b) Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999,
121, 3228. (c) Yang, Y.; Chan, T. H. J. Am. Chem. Soc. 2000, 122, 402.
(d) Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org.
Lett. 2000, 2, 847. (e) Babu, S. A.; Yasuda, M.; Shibata, I.; Baba, A. Org.
Lett. 2004, 6, 4475.
(11) Selected examples: (a) Vinogradov, E.; Bock, K. Angew. Chem.,
Int. Ed. 1999, 38, 671. (b) Milroy, L.-G.; Zinzalla, G.; Loiseau, F.; Qian,
Z.; Prencipe, G.; Pepper, C.; Fegan, C.; Ley, S. V. ChemMedChem 2008,
3, 1922.
(12) Selected examples: (a) Nicolaou, K. C.; Seitz, S. P.; Papahatjis,
D. P. J. Am. Chem. Soc. 1983, 105, 2430. (b) Dixon, D. J.; Foster, A. C.;
Ley, S. V.; Reynolds, D. J. J. Chem. Soc., Perkin Trans. 1 1999, 1635. (c)
See also ref 11b.
(13) Selected examples: (a) Margot, C.; Rizzolio, M.; Schlosser, M.
Tetrahedron 1990, 46, 2411. (b) Carey, J. S.; Thomas, E. J. Synlett 1992,
585. (c) Higashino, T.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2000, 2, 4193.
(d) Le Noˆtre, J.; Brissieux, L.; Se´meril, D.; Bruneau, C.; Dixneuf, P. H.
Chem. Commun. 2002, 1772. (e) Cui, Y.-M.; Huang, Q.-Q.; Xu, J.; Chen,
L.-L.; Li, J.-Y.; Ye, Q.-Z.; Li, J.; Nan, F.-J. Bioorg. Med. Chem. Lett. 2005,
15, 4130.
We then studied the mechanism by employing substituted
allyl reagents (Scheme 2). As expected, use of R-methyla-
llylsilane 4 provided the classic γ-product 7a. In sharp
contrast, use of R-methylallylboronate 5 resulted in the
exclusive formation of the rarely obtained R-product 8a in
83% yield. It should be noted that both crotylboronates (E)-6
and (Z)-6 gave an identical result with respect to regio- and
(14) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941.
(15) Selected examples for catalytic Hosomi-Sakurai reactions: Lewis
acids: (a) Sakurai, H.; Sasaki, K.; Hosomi, A. Tetrahedron Lett. 1981, 22,
745. (b) Yadav, J. S.; Reddy, B. V. S.; Srihari, P. Synlett 2001, 673. (c)
Wieland, L. C.; Zerth, H. B.; Mohan, R. S. Tetrahedron Lett. 2002, 43,
4597. (d) Braun, M.; Kotter, W. Angew. Chem., Int. Ed. 2004, 43, 514. (e)
Ooi, T.; Takahashi, M.; Yamada, M.; Tayama, E.; Omoto, K.; Maruoka,
K. J. Am. Chem. Soc. 2004, 126, 1150. (f) Spafford, M. J.; Anderson, E. D.;
Lacey, J. R.; Palma, A. C.; Mohan, R. S. Tetrahedron. Lett. 2007, 48, 8665.
(g) Brønsted acid: Kampen, D.; List, B. Synlett 2006, 2589.
(16) Allylation of acetals with nucleophilic allyl trialkylborates (sto-
ichiometric SiIV): Hunter, R.; Michael, J. P.; Tomlinson, G. D. Tetrahedron
1994, 50, 871.
(17) Preparation of InIOTf as a soluble indium(I) source: Macdonald,
C. L. B.; Corrente, A. M.; Andrews, C. G.; Taylor, A.; Ellis, B. D. Chem.
Commun. 2004, 250.
Org. Lett., Vol. 12, No. 11, 2010
2489