4054
Y. R. Santosh Laxmi et al. / Bioorg. Med. Chem. Lett. 14 (2004) 4051–4054
the molecular mass as 5026 Da. Several (E)-dG-N2-N-
desTAM-modified oligomers having different sequence
context have been successfully synthesized, and these
modified oligomers were also resolved into two diaste-
reoisomeric oligomers by HPLC.
4. Santosh Laxmi, Y. R.; Suzuki, N.; Dasaradhi, L.; John-
son, F.; Shibutani, S. Chem. Res. Toxicol. 2002, 15, 218–
225.
5. Kitagawa, M.; Ravindernath, A.; Suzuki, N.; Rieger, R.;
Terashima, I.; Umemoto, A.; Shibutani, S. Chem. Res.
Toxicol. 2000, 13, 761–769.
6. Mitsunobu, O.; Wada, M.; Sano, T. J. Am. Chem. Soc.
1971, 94, 679–680.
7. Motawia, M. S.; Wengel, J.; Abdel-Megid, A. E. S.;
Pedersen, E. B. Synthesis 1989, 384–387.
8. DeCorte, B. L.; Tsarouhtsis, D.; Kuchimanchi, S.; Coo-
per, M. D.; Horton, P.; Harris, C. M.; Harris, T. M.
Chem. Res. Toxicol. 1996, 9, 630–637.
9. Beaulieu, P. L.; Schiller, P. W. Tetrahedron Lett. 1988, 29,
2019–2022.
10. Mcgee, D. P. C.; Cook, P. N.; Guinosso, C. J. PCT. Int.
Appl., WO 9402501, 1994; p 85.
11. Shibutani, S.; Suzuki, N.; Santosh Laxmi, Y. R.; Schild, L.
J.; Divi, R. L.; Grollman, A. P.; Poirier, M. C. Cancer Res.
2003, 63, 4402–4406.
32P-Postlabeling/HPLC analysis developed recently in
our laboratory11 can also be used to confirm the incor-
poration of dG-N2-N-desTAM into oligomers. As
shown in Figure 2A, standards of (E)- (fr-1 and fr-2) and
(Z)- (a mixture of fr-3 and fr-4) isomers of dG30P-N2-N-
desTAM and dG3-N2-TAM can be resolved in 50 min.
The retention times of a DNA adduct from fr-1 and fr-2
of the modified oligomers were 19.8 min (Fig. 2B) and
20.5 min (Fig. 2C), respectively. When the DNA adduct
from oligomer containing fr-1 (Fig. 2E) or fr-2 (Fig. 2F)
was co-injected with the authentic standards (Fig. 2D),
the products were identified as fr-1 and fr-2 of (E)-dG30p
-
N2-N-desTAM, respectively.
12. Spectral data of new compounds:
1
5: FAB mass: m=z 506 (Mþ). H NMR (CDCl3) d ppm:
1.13 (d, 3H, J ¼ 6:9 Hz, HC–CH3); 3.01 (s, 3H, N(CH3));
3.57–3.61 (m, 2H, N–CH2); 3.90–4.01 (m, 2H, O–CH2);
4.10 (q, 1H, J ¼ 6:96 Hz, NH2HC(CH3)); 6.46–6.55 (m,
2H, H-3,5 of CC6H4O); 6.79–6.85 (m, 2H, H-2,6 of
CC6H4O); 7.20–7.43 (m, 15H, phenyls). 13C NMR
(CDCl3) d ppm: 22.8 (HC–CH3); 35.8 (N(CH3)); 48.7
(NH2HC(CH3)); 47.9 and 48.7 (N–CH2); 65.7 and 66.1
(O–CH2); 66.9 (O–CH2Ph); 113.1, 126.2, 126.6, 127.4,
127.6, 127.7, 127.8, 128.2, 128.3, 129.2, 130.8, 131.0, 134.9,
136.6, 138.4, 138.7, 142.2, 144.1, 156.1, 156.2, 156.4.
7: FAB mass: m=z 1059 (Mþ+1). 1H NMR (CD3OD) d
ppm: 1.39 (m, 3H, HC–CH3); 2.95 (s, 3H, N(CH3)); 3.53–
3.61 (m, 2H, N–CH2); 3.82–3.98 (m, 2H, O–CH2), 5.05–
5.12 (m, 2H, O–CH2–Ph); 5.15–5.24 (m, 1H, N–CH–CH3),
6.39–7.52 (m, 33H, aromatic and C10-H of sugar moiety);
7.84–7.85 (m, 1H, H at C-8 of dG), sugar moiety: 2.40–
2.56 (m, 2H, 20-CH2); 3.20–3.45 (m, 2H, 50CH2–OH); 3.78
(s, 6H, OCH3); 4.15–4.22 (m, 1H, 40-CH); 4.53–4.62 (m,
1H, 30-CH).
8: FAB mass: m=z 925 (Mþ+1). 1H NMR (CD3OD) d
ppm: 1.34–1.36 (m, 3H, HC–CH3); 2.44–2.49 (2s, 3H,
N(CH3)); 2.85–2.98 (m, 2H, N–CH2); 3.81–3.95 (m, 2H,
O–CH2), 5.06–5.21 (m, 1H, N–CH–CH3), 6.36–7.49 (m,
33H, aromatic and C10-H of sugar moiety); 7.84–7.85 (m,
1H, H at C-8 of dG), sugar moiety: 2.62–2.76 (m, 2H, 20-
CH2); 3.32–3.48 (m, 2H, 50CH2–OH); 3.70 (s, 3H, OCH3);
3.73 (s, 3H, OCH3); 4.12–4.21 (m, 1H, 40-CH); 4.48–4.58
(m, 1H, 30-CH).
Thus, phosphoramidite chemical synthesis allows the
preparation of substantial quantities of oligomers con-
taining dG-N2-N-desTAM adduct(s) in virtually any
sequence context. These dG-N2-N-desTAM-modified
oligomers will be used for mutagenesis, DNA repair
studies, 3D NMR structural and crystallographic stud-
ies. Such modified oligomers can also be used as stan-
dards for 32P-postlabeling analysis to quantify dG-N2-
N-desTAM-DNA adducts in animal and human.
Acknowledgements
This research was supported by a Grant ES09418 from
the National Institute of Environmental Health Sci-
ences. We thank Mrs. Cecilia M. Torres for synthesis of
modified oligodeoxynucleotides by automated DNA
synthesizer and Mr. Robert Rieger for mass measure-
ment.
References and notes
1. Jordan, V. C. Br. J. Pharmacol. 1993, 110, 507–517.
2. (a) van Leeuwen, F. E.; Benraadt, J.; Coebergh, J. W. W.;
Kiemeney, L. A. L. M.; Diepenhorst, F. W.; van den Belt-
Dusebout, A. W.; van Tinteren, H. Lancet 1994, 343, 448–
452; (b) Fischer, B.; Costantino, J. P.; Wickerham, L.;
Redmond, C. K.; Kavanah, M.; Cronin, W. M.; Botel, V.;
Robidoux, A.; Dimitrov, N.; Atkins, J.; Daly, M.;
Wieand, S.; Tan-Chiu, E.; Ford, L.; Wormark, N., et al.
J. Natl. Cancer Inst. 1998, 90, 1371–1388.
9: 1H NMR (CD3OD) d ppm: 1.04–1.16 (m, 12H,
2[(CH3)2CH]); 1.32–136 (m, 3H, CHCH3); 2.31–2.39 (m,
2H, C20H); 2.43–2.52 (m, 2H, CH2CN); 2.55–2.61 (m, 3H,
N(CH3)); 2.63–2.76 (m, 2H, NCH2); 3.34–3.54 (m, 4H, P–
O–CH2, 2NCH(CH3)2); 3.57–3.68 (m, 2H, 50CH2OH);
3.70–3.75 (m, 6H, OCH3); 3.86–3.95 (m, 2H, OCH2); 4.12–
4.21 (m, 1H, 40CH of sugar moiety); 4.48–4.58 (m, 1H,
30CH of sugar moiety); 5.11–5.21 (m, 1H, HNCHCH3);
6.33–7.49 (m, 29H, aromatic and 10CH); 7.81–7.85 (m, 1H,
H at C8 of dG). 31P NMR (CD3OD) d ppm: 149.84,
150.27, 150.36.
3. Kim, S. Y.; Suzuki, N.; Santosh Laxmi, Y. R.; Shibutani,
S. Drug Metab. Rev. 2004, 36, 199–218.