Organic Process Research & Development
Article
under vacuum at 48−51 °C until no further distillate could be
collected. The residue was dissolved in MeOH (48.25 kg) and
concentrated under vacuum at 50−51 °C until no further
distillate could be collected, to give the residue (R,R)-10.
Another reactor was charged with 35.4% H2O2 (8.05 kg; 83.8
mol) and purified water (40.65 kg), and was cooled to 5 °C. A
solution of lithium hydroxide monohydrate (3.00 kg, 71.4 mol)
in purified water (20.30 kg) was added dropwise. The resulting
lithium peroxide solution was transferred to a second reactor
containing a solution of (R,R)-10 in MeOH (96.50 kg)
dropwise over 1 h at 0−3 °C. After stirring at −1−3 °C for 1.5
h, a solution of Na2SO3 (18.30 kg; 145.2 mol) in purified water
(163.50 kg) was added dropwise to the resulting solution over a
period of 1.5 h at 8−9 °C. After warming to 35 °C, lithium
hydroxide monohydrate (3.80 kg; 90.6 mol) was added to the
solution. After stirring at 38−40 °C for 2.5 h, the resulting
solution was washed with toluene (87.90 kg), and acidified by
35% aq HCl (27.50 kg). The aqueous layer was extracted with
EtOAc (91.35 kg, 91.35 kg, 91.25 kg) three times, and the
collected organic layers were washed with 10% aq NaCl (81.75
kg), dried over MgSO4 (4.05 kg), and filtered. After the filtrate
was concentrated at 50 °C under vacuum, the residue was
dissolved in i-BuOAc (70.30 kg), and the solution was
concentrated at 50−51 °C under vacuum. The residue was
dissolved in i-BuOAc (87.95 kg) at 110 °C. The solution was
cooled slowly to 85 °C for crystallization. After crystallization,
the suspension was stirred at 85−81 °C for 1.5 h, and cooled
slowly to 15 °C over a period of 8 h. After stirring at 15−11 °C
for 3 h, a crystal was filtered, washed with i-BuOAc (35.20 kg),
and dried at 46−51 °C for 6 h under vacuum to give (R)-2 as a
colorless crystal (16.20 kg; 80.0% yield from Rac-2, 99.84:0.16
REFERENCES
■
(1) Danaei, G.; Finucane, M. M.; Lu, Y.; Singh, G. M.; Cowan, M. J.;
Paciorek, C. J.; Lin, J. K.; Farzadfar, F.; Khang, Y.-H.; Stevens, G. A;
Rao, M.; Ali, M. K; Riley, L. M; Robinson, C. A; Ezzati, M. Lancet
2011, 378, 31.
(2) (a) Moller, D. E. Nature 2001, 414, 821. (b) Grimsby, J.; Sarabu,
R.; Corbett, W. L.; Haynes, N.-E.; Bizzarro, F. T.; Coffey, J. W.;
Guertin, K. R.; Hilliard, D. W.; Kester, R. F.; Mahaney, P. E.; Marcus,
L.; Qi, L.; Spence, C. L.; Tengi, J.; Magnuson, M. A.; Chu, C. A.;
Dvorozniak, M. T.; Matschinsky, F. M.; Grippo, J. F. Science 2003, 301,
370. (c) Sarabu, R.; Grimsby, J. Curr. Opin. Drug Discovery Dev. 2005,
8, 631. (d) Bertram, L. S.; Black, D.; Briner, P. H.; Chatfield, R.;
Cooke, A.; Fyfe, M. C. T.; Murray, P. J.; Naud, F.; Nawano, M.;
Procter, M.; Rakipovski, G.; Rasamison, C. M.; Reynet, C.; Schofield,
K. L.; Shah, V. K.; Spindler, F.; Taylor, A.; Turton, R.; Williams, G. M.;
Wong-Kai-In, P.; Yasuda, K. J. Med. Chem. 2008, 51, 4340. (e) Sarabu,
R.; Berthel, S. J; Kester, R. F; Tilly, J. W Expert Opin. Ther. Pat. 2008,
7, 759. (f) Coghlan, M.; Leighton, B. Expert. Opin. Investig. Drugs
2008, 2, 145. (g) Matschinsky, F. M. Nat. Rev. Drug Discovery 2009, 8,
399. (h) Li, F.; Zhu, Q.; Zhang, Y.; Feng, Y.; Leng, Y.; Zhang, A.
Bioorg. Med. Chem. 2010, 18, 3875.
(3) (a) Fyfe, M. C. T.; Gardner, L. S.; Nawano, M.; Procter, M. J.;
Rasamison, C. M.; Schofield, K. L.; Shah, V. K.; Yasuda, K. PCT Int.
Appl. WO/2004/072031 A2 20040826, 2004. (b) Briner, P. H.; Fyfe,
M. C. T.; Madeley, J. P.; Murray, P. J.; Procter, M. J.; Spindler, F. PCT
Int. Appl. WO/2006/016178 A1 20060216, 2006. (c) Sugawara, K.;
Toshikawa, S. PCT Int. Appl. WO/2009/139438 A1 20091119, 2009.
(d) Magnus, N. A.; Braden, T. M.; Buser, J. Y.; DeBaillie, A. C.; Heath,
P. C.; Ley, C. P.; Remacle, J. R.; Varie, D. L.; Wilson, T. M. Org.
Process Res. Dev. 2012, 16, 830. (e) DeBaillie, A. C.; Magnus, N. A.;
Laurila, M. E.; Wepsiec, J. P.; Ruble, J. C.; Petkus, J. J.; Vaid, R. K.;
Niemeier, J. K.; Mick, J. F.; Gunter, T. Z. Org. Process Res. Dev. 2012,
16, 1538. (f) Yamagami, T.; Hatsuda, M.; Utsugi, M.; Kobayashi, R.;
Moritani, Y. Eur. J. Org. Chem. 2013, 33, 7467.
(4) (a) Larsen, R. D.; Corley, E. G.; Davis, P.; Reider, P. J.;
Grabowski, E. J. J. J. Am. Chem. Soc. 1989, 111, 7650. (b) Chen, C.;
Dagneau, P.; Grabowski, E. J. J.; Oballa, R.; O’Shea, P.; Prasit, P.;
Robichaud, J.; Tillyer, R.; Wang, X. J. Org. Chem. 2003, 68, 2633.
(5) (a) Truce, W. E.; Hollister, K. R.; Lindy, L. B.; Parr, J. E. J. Org.
Chem. 1968, 33, 43. (b) Masson, E.; Leroux, F. Helv. Chim. Acta 2005,
88, 1375.
(6) (a) Olah, G. A.; Narang, S. C. Tetrahedron 1982, 38, 2225.
(b) Sakai, T.; Miyata, K.; Utaka, M.; Takeda, A. Bull. Chem. Soc. Jpn.
1987, 60, 1063. (c) Sakai, T.; Miyata, K.; Tsuboi, S.; Takeda, A.;
Utaka, M.; Torii, S. Bull. Chem. Soc. Jpn. 1989, 62, 3537. (d) Stoner, E.
J.; Cothron, D. A.; Balmer, M. K.; Roden, B. A. Tetrahedron 1995, 51,
11043.
1
3
er). (R)-2: H NMR (CDCl3): δ 7.87 (d, JHH = 8.4 Hz, 2H),
7.51 (d, 3JHH = 8.2 Hz, 2H), 3.97−3.90 (m, 2H), 3.80 (t, 3JHH
=
2
3
7.8 Hz, 1H), 3.30 (tdd, JHH = 11.8 Hz, JHH = 5.1 Hz, 2.0 Hz,
2H), 2.46 (tt, 3JHH = 7.9 Hz, 4.9 Hz, 1H), 2.12−2.04 (m, 1H),
1.81−1.72 (m, 1H), 1.64−1.55 (m, 2H), 1.46−1.25 (m, 5H),
1.08−1.01 (m, 2H). 13C NMR (DMSO-d6): δ 174.1, 145.5,
139.1, 128.9, 127.4, 66.8, 47.5, 39.7, 32.5, 32.3, 32.1, 31.9, 5.3.
Anal. Calcd for C17H22O5S: C, 60.33; H, 6.55; S, 9.47. Found:
C, 60.08; H, 6.50; S, 9.49. [α]20 −53.4 (c 1.06, MeOH).
D
ASSOCIATED CONTENT
■
S
(7) Ethyl glyoxalate is commercially available in its polymeric form in
toluene solution, and a monomer is generated by pyrolysis of a
polymer. The monomer form is so reactive that it polymerizes easily
and reacts readily with water to generate the hydrated form. Ethyl
glyoxalate is therefore distilled just prior to use, after pyrolysis, and is
used under nonaqueous conditions.
* Supporting Information
Spectra of all new compounds, such as intermediate 14,
impurities 15 and 16. This material is available free of charge
AUTHOR INFORMATION
(8) Hanaoka, M.; Yoshida, S.; Annen, M.; Mukai, C. Chem. Lett.
1986, 15, 739. (b) Yoda, H.; Kimura, K.; Takabe, K. Synlett 2001, 3,
400.
(9) Other Lewis acids such as AlCl3, FeCl3, and ZnCl2 produced a
sticky substance in the middle of conversion, prohibiting mixture
stirring before the reaction completed. For an example using AlCl3,
see: Jaxa-Chamiec, A.; Shah, V. P.; Kruse, L. I. J. Chem. Soc. Perkin
Trans. I 1989, 1705.
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(10) Luzzio, F. A.; Wlodarczyk, M. T.; Duveau, D. Y.; Chen, J.
Tetrahedron Lett. 2007, 48, 6704.
■
We are grateful to the API Corporation for manufacturing (R)-
1 on pilot scale. In addition, we thank Mr. Shigeru Kimura, Mr.
Koki Harigaya, Mr. Masanobu Ota, Dr. Hajime Hiramatsu, Dr.
Masanori Hatsuda, Dr. Masayuki Utsugi, and Mr. Ryo
Kobayashi for analytical supports and helpful discussions.
(11) Joshi, R. R.; Narasimhan, N. S. Synthesis 1987, 943.
(12) (a) Sakai, T.; Miyata, K.; Tsuboi, S.; Takeda, A.; Utaka, M.;
Torii, S. Bull. Chem. Soc. Jpn. 1989, 62, 3537. (b) Stoner, E. J.;
Cothron, D. A.; Balmer, M. K.; Roden, B. A. Tetrahedron 1995, 51,
11043.
444
dx.doi.org/10.1021/op400354g | Org. Process Res. Dev. 2014, 18, 437−445