10.1002/adsc.202100234
Advanced Synthesis & Catalysis
Acknowledgements
[6] a) T. Cohen, R. M. Moran, G. Sowinski, J. Org. Chem.
Am. Chem. Soc. 2011, 133, 18495-18502.
We thank Chinese Academy of Sciences (the Hundred Talents
Program, the Biological Resources Programme (KFJ-BRP-008)),
the National Science Foundation of China (21772192 and
22001246), the Thousand Talents Program of Sichuan Province
and Key Project of the Science and Technology Department of
Zigong (2020YGJC11), Sichuan Province, for the financial
support.
[7] X. P. Jiang, C. Zheng, L. J. Lei, K. Lin, C. M. Yu, Eur.
J. Org. Chem. 2018, 1437-1442.
[8] S. V. Shelar, N. P. Argade, Org. Biomol. Chem. 2019,
17, 6671-6677.
[9] For selected reviews on hypervalent iodine: a) V. V.
Zhdankin, P. J. Stang, Chem. Rev. 2002, 102, 2523-2584;
b) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108,
5299-5358.
References
[1] a) A. P. Sakla, P. Kansal, N. Shankaraiah, Eur. J. Org.
Chem. 2021, 5, 757-772; b) A. J. Boddy, J. A. Bull, Org.
Chem. Front. 2021, 8, 1026-1084.
[10] For selected examples on reactions promoted by the
combinations hypervalent iodine with halide species, a)
G. Doleschall, G. Toth, Tetrahedron 1980, 36, 1649-
1665; b) G. S. Argirusi, A. Kirschning, Org. Lett. 2000,
2, 3781-3784; c) R. H. Fan, Y. Ye, W. X. Li, L. F. Wang,
Adv. Synth. Catal. 2008, 350, 2488-2492; d) R. Fan, Y.
Ye, Org. Lett. 2009, 11, 5174-5177; e) H. Tohma, S.
Takzawa, T. Maegawa, Y. Kita, Angew. Chem. Int. Ed.
2000, 39, 1306-1308; f) W. Kong, M. Casimiro, N.
Fuentes, E. Merino, C. Nevado, Angew. Chem. Int. Ed.
2013, 52, 13086-13090; g) C. Xu, J. Liu, W. Ming, Y.
Liu, J. Liu, M. Wang, Q. Liu, Chem. Eur. J. 2013, 19,
9104-9109; h) Y. Ye, L. Wang, R. Fan, J. Org.
Chem. 2010, 75, 1760-1763; i) Y. Sun, R. H. Fan, Chem.
Commun. 2010, 46, 6834-6836; j) H. J. Kim, S. H. Cho,
S. Chang, Org. Lett. 2012, 14, 1424-1427; k) D. Zhu, D.
Chang, S. Gan, L. Shi. RSC Adv. 2016, 6, 27983-27987;
l) R. Beltran, S. Nocquet-Thibault, F. Blanchard, R. H.
Dodd, K. Cariou, Org. Biomol. Chem. 2016, 14, 8448-
8451; m) J. Tao, C. D. Estrada, G. K. Murphy, Chem.
Commun. 2017, 53, 9004-9007; n) T. D. Grayfer, P.
Retailleau, R. H. Dodd, J. Dubois, K. Cariou, Org. Lett.
2017, 19, 4766-4769; o) L. Peilleron, T. D. Grayfer, J.
Dubois, R. H. Dodd, K. Cariou, Beilstein J. Org. Chem.
2018, 14, 1103-1111; p) L. Peilleron, P. Retailleau, K.
Cariou, Adv. Synth. Catal. 2019, 361, 5160-5169; q) A.
Granados, A. Shafir, A. Arrieta, F. P. Cossio, A.
Vallribera, J. Org. Chem. 2020, 85, 2142-2150; r) B.
Garcia, C. Martinez, A. Piccinelli, K. Muniz, Chem– Eur.
J. 2017, 23, 1539-1545
[2] a) S. S. Ma, W. L. Mei, Z. K. Guo, S. B. Liu, Y. X. Zhao,
D. L. Yang, Y. B. Zeng, B. Jiang, H. F. Dai, Org. Lett.
2013, 15, 1492-1495; b) K. Eiter, O. Svierak,
Monatshefte Fuer Chemie 1951, 82, 186-188; c) P. L.
Julian, J. Pikl, K. Boggess, J. Am. Chem. Soc. 1934, 56,
1797-1801; d) J. Xu, L. X. Liang, H. H. Zheng, Y. G. R.
Chi, R. B. Tong, Nat. Commun. 2019, 10, 4754; e) T.
Matsuura, L. E. Overman, D. J. Poon, J. Am. Chem. Soc.
1998, 120, 6500-6503; f) L. L. Chen, J. X. Song, J. H.
Lu, Z. W. Yuan, L. F. Liu, S. K. Durairajan, M. Li, J.
Neuroimmune Pharm. 2014, 9, 380-387.
[3] a) K. C. Luk, S. S. So, J. Zhang, Z. M. Zhang, PCT Int.
Appl. (2006), WO 2006136606; b) S. P. Marsden, E. L.
Watson, S. A. Raw, Org. Lett. 2008, 10, 2905-2908; c)
W. B. Bindseil, E. Helmake, H. Weyland, H. Laatsch,
Liebigs Ann. 1995, 1291-1294; d) T. Ueda, M. Inada, I.
Okamoto, N. Morita, O. Tamura, Org. Lett. 2008, 10,
2043-2046.
[4] a) G. D. Zhao, L. X. Liang, E. Y. Wang, S. Y. Lou, R.
Qi, R. B. Tong, Green Chem. 2021, 23, 2300-2307 and
references cited therein. For selected other important
examples, see: b) C. Qian, P. Li, J. Sun, Angew. Chem.
Int. Ed. 2021, 60, 5871-5875; c) M. Budovská, V.
Tischlerová, J. Mojžiš, O. Kozlov, T. Gondová,
Monatsh. Chem. 2020, 151, 63-77; d) G. Li, L. Huang,
J. Xu, W. Sun, J. Xie, L. Hong, R. Wang, Adv. Synth.
Catal. 2016, 358, 2873-2877; e) h) L. Wang, X. Qu, L.
Fang, Z. Li, S. Hu, F. Wang, Eur. J. Org. Chem. 2016,
2016, 5494-5501; f) C. Bathula, P. Dangi, S. Hati, R.
Agarwal, P. Munshi, A. Singh, S. Singh, S. Sen, New J.
Chem. 2015, 39, 9281-9292; f) M. Alamgir, P. S. R.
Mitchell, P. K. Bowyer, N. Kumar, D. S. Black,
Tetrahedron, 2008, 64, 7136-7142; g) F. Lazzaro, M.
Crucianelli, F. De Angelis, V. Neri, R. Saladino,
Tetrahedron Lett. 2004, 45, 9237-9240; h) M. P. J. van
Deurzen, F. van Rantwijk and R. A. Sheldon, J. Mol.
Catal. B-Enzy, 1996, 2, 33-42; i) A. C. Peterson, J. M.
Cook, Tetrahedron Lett. 1994, 35, 2651-2654; j) X.
Zhang, C. S. Foote, J. Am. Chem. Soc. 1993, 115, 8867-
8868; k) R. L. Hinman, C. P. Bauman, J. Org. Chem.
1964, 29, 1206-1215.
[11] a) X. F. Ma, Y. Z. Liu, L. Du, J. W. Zhou, I. E. Markó,
Nat. Commun. 2020, 11, 914; b) Y. Pan, J. T. Li, Z. F.
Li, F. Huang, X. F. Ma, W. Jiao, H. W. Shao, Chem.
Commun. 2020, 56, 7813-7816; c) P. Liang, Y. Pan, X.
F. Ma, W. Jiao, H. W. Shao, Chem. Commun. 2018, 54,
3763-3766; d) X. F. Ma, J. J. Farndon, T. A. Young, J.
F. Bower, Angew. Chem. Int. Ed. 2017, 56, 14531-14535.
[12] When the reaction was carried out with NaClO and
HCl, the oxindole product 11a was only isolation in 21%
after 1 hour.
[13] D. D. Tu, L. Y. Ma, X. G. Tong, X. Deng, C. F. Xia,
Org. Lett. 2012, 14, 4830-4833; b) D. Kajiyama, T.
Saitoh, S. Yamaguchi, S. Nishiyama, Synthesis 2012, 44,
1667-1671; c) J. Loh, D. Enders, Angew. Chem. Int. Ed.
2012, 51, 46-48.
[5] W. E. Savige, A. Fontana, J. Chem. Soc. Chem. Commun.
1975, 15, 599-600.
7
This article is protected by copyright. All rights reserved.