2632
Remote Sensing L etters
References
Ahearn, S. C., 1988, Combining Laplacian images of diVerent spatial frequencies (scales):
implications for remote sensing analysis. IEEE T ransactions on Geoscience and Remote
Sensing, 26, 826–831.
Anger, C. D., 1999, Airborne hyperspectral remote sensing in the future? In Proceedings,
Fourth International Symposium on Airborne Remote Sensing and 21st Canadian
Symposium on Remote Sensing (Ottawa: Canadian Aeronautics and Space Institute),
pp. 1–15.
Barnsley, M., 1999, Digital remotely-sensed data and their characteristics. In Geographical
Information Systems, 2nd edn, edited by P. A. Longley, M. F. Goodchild, D. J. Maguire
and D. W. Rhind (New York: John Wiley), pp. 451–466.
Cohen, W. B., Spies, T. A., and Bradshaw, G. A., 1990, Semivariograms of digital imagery
for analysis of conifer canopy structure. Remote Sensing of Environment, 29, 669–672.
Franklin, S. E., Wulder, M. A., and Lavigne, M. B., 1996, Automated derivation of
geographic window sizes for remote sensing digital image texture analysis. Computers
& Geosciences, 22, 665–673.
Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J., and Lavigne, M. B., 2000,
Incorporating texture into classi cation of forest species composition from airborne
multispectral images. International Journal of Remote Sensing, 21, 61–79.
Gillis, M., and Leckie, D., 1993, Forest inventory mapping procedures across Canada.
Petawawa National Forestry Institute, Information Report PI-X-114. Canadian Forest
Service: Ottawa, Ontario.
Graham, R., and Read, R. E., 1986, Manual of Aerial Photography (London: Focal Press).
Green, K., 2000, Selecting and interpreting high-resolution images. Journal of Forestry, 98,
37–39.
Haralick, R. M., 1986, Statistical image texture analysis. In Handbook of Pattern Recognition
and Image Processing, edited by T. Y. Young and K. S. Fu (New York: Academic
Press), pp. 247–279.
Haralick, R. M., Shanmugam, K., and Dinstein, I., 1973, Texture features for image
classi cation. IEEE T ransactions on Systems, Man, and Cybernetics, 3, 610–621.
Hay, G. J., Niemann, K. O., and McLean, G. F., 1996, An object-speci c image texture
analysis of H-resolution forest imagery. Remote Sensing of Environment, 55, 108–122.
Lillesand, T. M., and Kiefer, R. W., 1994, Remote Sensing and Image Interpretation, 3rd edn
(New York: Wiley).
Neter, J., Wasserman, W., and Kutner, M. H., 1990, Applied L inear Statistical Models, 3rd
edn (Boston: Irwin).
Spies, T. A., 1997, Forest stand structure, composition, and function. In Creating a Forestry
for the 21st Century, the Science of Ecosystem Management, edited by K. A. Kohm
and J. F. Franklin (Washington: Island Press), pp. 11–30.
St-Onge, B. A., and Cavayas, F., 1995, Estimating forest stand structure from high resolution
imagery using the directional variogram. International Journal of Remote Sensing, 16,
1999–2021.
St-Onge, B. A., and Cavayas, F., 1997, Automated forest structure from high resolution
imagery based on directional semivariogram estimates. Remote Sensing of Environment,
61, 82–95.
Wulder, M., Niemann, K. O., and Goodenough, D., 2000, Local maximum ltering for the
extraction of tree locations and basal area from high spatial resolution imagery.
Remote Sensing of Environment, 73, 103–114.