tigation of new biological activities of fluorinated amino
acids,11 a more practical and general route to fluorinated
R-amino acids, particularly for their optical pure enan-
tiomers,12 is quite attractive. In 1995, Shi et al. reported
the divergent synthesis of racemic â,â-difluoroglutamic
acid and â,â-difluoroproline.13 Key features of their
pioneering work are follows: (i) the use of â,â-difluoro-
R-aminoesters as a common precursor, which were pre-
pared from trifluoropyruvate via reductive dechloroflu-
orination, Claisen rearrangement, and the subsequent
reductive amination and (ii) the application of oxidative
cleavage of C-C double bonds in fluorinated aminoesters,
which provided difluoroglutamic acid and difluoroproline
selectively.
Ca ta lytic Rou te to th e Syn th esis of
Op tica lly Active â,â-Diflu or oglu ta m ic Acid
a n d â,â-Diflu or op r olin e Der iva tives
Atsushi Suzuki, Masayuki Mae, Hideki Amii, and
Kenji Uneyama*
Department of Applied Chemistry, Faculty of Engineering,
Okayama University, 3-1-1 Tsushimanaka,
Okayama 700-8530, J apan
uneyamak@cc.okayama-u.ac.jp
Received February 6, 2004
Abstr a ct: â,â-Difluorinated amino acid derivatives were
synthesized via Mg(0)-promoted defluorination of R-trifluo-
romethyl iminoester. Bromination of the difluoroenamine
afforded the bromodifluoromethyl iminoester in good yield.
Pd-catalyzed asymmetric hydrogenation of the bromodifluo-
romethyl iminoester and the subsequent transformations
provided optically active â,â-difluoroglutamic acid and â,â-
difluoroproline derivatives.
Herein, we present an enantioselective synthesis of
â,â-difluoroglutamic acid derivatives (3) and â,â-difluo-
roproline derivatives (4) possessing general N- and
O-protecting groups by the use of the chiral common
precursor 2, which was prepared via the catalytic asym-
metric hydrogenation of bromodifluoromethylated imi-
noester 1 (Scheme 1).
Trifluoromethyl iminoester 514,15 underwent reductive
defluorination upon treatment with metallic magnesium
Among various organofluorine compounds, fluorinated
amino acids have been studied as potential enzyme
inhibitors and therapeutic agents.1-3 Recently, in amino
acid and peptide chemistry, amino acids possessing two
fluorine atoms at the â-carbon have been paid much
attention because they can act as potent inactivators of
certain enzymes, in particular, highly selective inhibitors
of pyridoxal phosphate-dependent enzymes via a suicide-
type mechanism, and can block certain important meta-
bolic pathways.4,5
(7) Welch, J . T. Tetrahedron 1987, 43, 3123.
(8) (a) Holmquist, B.; Bunning, P.; Babiarz, J .-F. Anal. Biochem.
1979, 95, 540. (b) Katagiri, T.; Akizuki, M.; Kuriyama, T.; Shinke, S.;
Uneyama, K. Chem. Lett. 1997, 549. (c) Katagiri, T.; Irie, M.; Uneyama,
K. Tetrahedron: Asymmetry 1999, 10, 2583. (d) Matsukawa, Y.;
Kumar, J . S. D.; Yoneyama, Y.; Katagiri, T.; Uneyama, K. Tetrahe-
dron: Asymmetry 2000, 11, 4521. (e) Katagiri, T.; Irie, M.; Uneyama,
K. Org. Lett. 2000, 2, 2423. (f) Ohkura, H.; Handa, M.; Katagiri, T.;
Uneyama, K. J . Org. Chem. 2002, 67, 2692.
(9) (a) Abouabdellah, A.; Be´gue´, J .-P.; Bonnet-Delpon, D. Synlett
1996, 399. (b) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97,
757. (c) Abouabdellah, A.; Be´gue´, J .-P.; Bonnet-Delpon, D.; Nga, T. T.
T. J . Org. Chem. 1997, 62, 8826. (d) Banks, R. E. J . Fluorine Chem.
1998, 87, 1.
(10) (a) Weygand, F.; Steglich, W.; Oettmeier, W.; Maierhofer, A.;
Roy, R. S. Angew. Chem., Int. Ed. Engl. 1966, 5, 600. (b) Knunyants,
I. L.; Shokina, V. V.; Tyuleneva, V. V. Dokl. Acad. Nauk SSSR 1966,
169, 594; Proc. Acad. Sci. USSR, Chem. Sect. 1966, 169, 722; Chem.
Abstr. 1966, 65, 15218d. (c) Metcalf, B. W.; Bey, P.; Danzin, C.; J ung,
M. J .; Casara, P.; Vevert, J . P. J . Am. Chem. Soc. 1978, 100, 2551. (d)
Bey, P.; Vevert, J . P.; Van Dorrelaer, V.; Kolb, M. J . Org. Chem. 1979,
44, 2732. (e) Burger, K.; Hubl, D.; Gertitschke, P. J . Fluorine Chem.
1985, 27, 327. (f) Amii, H.; Kondo, S.; Uneyama, K. Chem. Commun.
1998, 1845. (g) (S)-13 was prepared by the diastereoselective bromodi-
fluoromethylation of hydroxypinanone glycinate Schiff base as a key
step: Katagiri, T.; Handa, M.; Matsukawa, Y.; Kumar. J . S. D.;
Uneyama, K. Tetrahedron: Asymmetry 2001, 12, 1303.
To date, despite the potent biological activities of
fluorinated R-amino acids, few examples of synthetic
methods have been reported.6-10 Toward further inves-
(1) (a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine
Chemistry; Kodansha, Ltd.: Tokyo, 1982. (b) Ishikawa, N., Ed.
Synthesis and Speciality of Organofluorine Compounds; CMC: Tokyo,
1987. (c) Ishikawa, N., Ed. Biologically Active Organofluorine Com-
pounds, CMC: Tokyo, 1990. (d) Welch, J . T.; Eswarakrishnan, S.
Fluorine in Bioorganic Chemistry; J ohn Wiley & Sons: New York,
1991. (e) Ojima, I.; McCarthy, J . R.; Welch, J . T., Ed.s Biomedical
Frontiers of Fluorine Chemistry; ACS Symposium Series 639; American
Chemical Society: Washington, DC, 1996.
(2) (a) Ondetti, M. A.; Cushman, D. W.; Rubin, B. Science 1977, 196,
441. (b) Cushman, D. W.; Cheung, H. S.; Sabo, E. F.; Ondetti, M. A.
Biochemistry 1977, 16, 5484. (c) Kollonitsch, J .; Perkins, L. M.;
Patchett, A. A.; Doldouras, G. A.; Marburg, S.; Duggan, D. E.; Maycock,
A. L.; Aster, S. D. Nature 1978, 274, 906. (d) Wyvratt, M. J .; Tristram,
E. W.; Ikeler, T. J .; Lohr, N. S.; J oshua, H.; Springer, J . P.; Arison, B.
H.; Patchett, A. A. J . Org. Chem. 1984, 49, 2816.
(3) Kukhar, V. P.; Soloshonok, V. A. Fluorine-Containing Amino
Acids: Synthesis and Properties; J ohn Wiley & Sons: New York, 1995.
(4) (a) Abeles, R. H.; Maycock, A. L. Acc. Chem. Res. 1976, 9, 313.
(b) Kumadaki, I. J . Synth. Org. Chem. J pn. 1984, 42, 786. (c) Faraci,
W. S.; Walsh, C. T. Biochemistry 1989, 28, 431.
(5) (a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine
Chemistry; Kodansha, Ltd.: Tokyo, 1982. (b) Walsh, C. Adv. Enzymol.
Relat. Areas Mol. Biol. 1984, 53, 493. (c) Bey, P.; Ann. Chem. Fr. 1984,
9, 695. (d) Seiler, N.; J ung, M. J .; Kock-Weser, J . Pharmacol. Rev. 1984,
36, 111. (e) Rathod, A. H.; Tashjian, A. H., J r.; Abeles, R. H. J . Biol.
Chem. 1986, 261, 6461. (f) Ojima, I.; Inoue, T.; Chakravarty, S. J .
Fluorine Chem. 1999, 97, 3.
(11) (a) Hart, B. P.; Coward, J . C. Tetrahedron Lett. 1993, 34, 4917.
(b) Percy, J . M.; Prime, M. E.; Broadhurst, M. J . J . Org. Chem. 1998,
63, 8049. (c) Gerus, I. I.; Kolomeitsev, A. A.; Kolycheva, M. I.; Kukhar,
V. P. J . Fluorine Chem. 2000, 105, 31.
(12) (a) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P. Tetrahe-
dron: Asymmetry 1996, 7, 1547. (b) Osipov, S. N.; Golubev, A. S.;
Sewald, N.; Michel, T.; Kolomiets, A. F.; Fokin, A. V.; Burger, K. J .
Org. Chem. 1996, 61, 7521. (c) Soloshonok, V. A.; Kukhar, V. P.
Tetrahedron 1997, 53, 8307. (d) Bravo, P.; Crucianelli, M.; Vergani,
B.; Zanda, M. Tetrahedron Lett. 1998, 39, 7771. (e) Percy, J . M.; Prime,
M. E.; Broadhurst, M. J . J . Org. Chem. 1998, 63, 8049. (f) Osipov, S.
N.; Bruneau, C.; Picquet, M.; Kolomiets, A. F.; Dixneuf, P. H. Chem.
Commun. 1998, 2053. (g) Fustero, S.; Pina, B.; de la Torre, M. G.;
Navarro, A.; de Arellano, C. R.; Simon, A. Org. Lett. 1999, 1, 977.
(13) Shi, G.-Q.; Cai, W.-L. J . Org. Chem. 1995, 60, 6289.
(14) (a) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.;
Uneyama, K. J . Org. Chem. 1993, 58, 32. (b) Uneyama, K. J . Synth.
Org. Chem. J pn. 1995, 53, 59. (c) Uneyama, K. J . Fluorine Chem. 1999,
97, 11.
(15) (a) Watanabe, H.; Hashizume, Y.; Uneyama, K. Tetrahedron
Lett. 1992, 33, 4333. (b) Amii, H.; Kishikawa, Y.; Kageyama, K.;
Uneyama, K. J . Org. Chem. 2000, 65, 3404.
(6) (a) Uneyama, K. In Enantiocontrolled Synthesis of Fluoro-organic
Compounds; Soloshonok, V. A., Ed.; J ohn Wiley & Sons, Ltd.: Chich-
ester, 1999; pp 391-418. (b) Uneyama, K.; Katagiri, T.; Amii, H. J .
Synth. Org. Chem. J pn. 2002, 60, 1069.
10.1021/jo049789c CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/22/2004
5132
J . Org. Chem. 2004, 69, 5132-5134