E
N. Ayyagari et al.
Letter
Synlett
(8) For radical reactions, see: (a) Recupero, F.; Punta, C. Chem. Rev.
2007, 107, 3800. For electrocatalylic reactions, see: (b) Nutting,
J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834.
(9) (a) Klykov, O.; Weller, M. G. Anal. Methods 2015, 7, 6443.
(b) Ames, D. E.; Grey, T. F. J. Chem. Soc. 1955, 3518.
Acknowledgment
J.D.B. gratefully acknowledges constant support of Dean Rebecca Fin-
ley in the College of Pharmacy at Thomas Jefferson University. J.D.B. is
also grateful to the Thomas Jefferson University for financial support.
(10) Miyabe, H.; Yoshida, K.; Yamauchi, M.; Takemoto, Y. J. Org.
Chem. 2005, 70, 2148.
Supporting Information
(11) (a) Lv, Y.; Sun, K.; Wang, T.; Li, G.; Pu, W.; Chai, N.; Shen, H.; Wu,
Y. RSC Adv. 2015, 5, 72142. (b) Dian, L.; Wang, S.; Zhang-Negre-
rie, D.; Du, Y. Adv. Synth. Catal. 2015, 357, 3836. (c) Lee, J. M.;
Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 7824.
(12) For representative examples, see: (a) Joshi, P. N.; Rai, V. Chem.
Commun. 2019, 55, 1100. (b) Fishman, J. M.; Zwick, D. B.;
Kruger, A. G.; Kiessling, L. L. Biomacromolecules 2019, 20, 1018.
(13) For representative examples, see: (a) Berger, B. J. Antimicrob.
Agents Chemother. 2000, 44, 2540. (b) Malachowski, W. P.;
Winters, M.; DuHadaway, J. B.; Lewis-Ballester, A.; Badir, S.;
Wai, J.; Rahman, M.; Sheikh, E.; LaLonde, J. M.; Yeh, S. R.;
Prendergast, G. C.; Muller, A. J. Eur. J. Med. Chem. 2016, 108, 564.
(c) Wencewicz, T. A.; Yang, B.; Rudloff, J. R.; Oliver, A. G.; Miller,
M. J. J. Med. Chem. 2011, 54, 6843.
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) For representative reviews, see: (a) Trost, B. Tetrahedron 2015,
71, 5708. (b) Fernandes, R. A.; Nallasivam, J. L. Org. Biomol.
Chem. 2019, 17, 8647.
(2) For representative reviews, see: (a) Wang, R.; Luan, Y.; Ye, M.
Chin. J. Chem. 2019, 37, 720. (b) Gensch, T.; Hopkinson, M. N.;
Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
(c) Liu, G.; Wu, Y. Top. Curr. Chem. 2010, 292, 195.
(14) (a) Sambiagio, C.; Schonbauer, D.; Blieck, R.; Dao-Huy, T.;
Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-
Delord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. Chem. Soc. Rev.
2018, 47, 6603. (b) Xue, Y.; Fan, Z.; Jiang, X.; Wu, K.; Wang, M.;
Ding, C.; Yao, Q.; Zhang, A. Eur. J. Org. Chem. 2014, 7481.
(15) (a) Campbell, A.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem.
Soc. 2010, 132, 15116. (b) Pilarski, L. T.; Selander, N.; Böse, D.;
Szabó, K. J. Org. Lett. 2009, 11, 5518. (c) Archambeau, A.; Rovis,
T. Angew. Chem. Int. Ed. 2015, 54, 13337. (d) Ye, Y.; Schimler, S.
D.; Hanley, P. S.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135,
16292.
(3) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970.
(4) Representative examples for the construction of C–C bond:
(a) Franzén, J.; Bäckvall, J.-E. J. Am. Chem. Soc. 2003, 125, 6056.
(b) Piera, J.; Närhi, K.; Bäckvall, J.-E. Angew. Chem. Int. Ed. 2006,
45, 6914. (c) Persson, A. K. Å.; Bäckvall, J.-E. Angew. Chem. Int.
Ed. 2010, 49, 4624. (d) Chen, H.; Cai, C.; Liu, X.; Li, X.; Jiang, H.
Chem. Commun. 2011, 47, 12224. (e) Wang, P.; Lin, H.; Zhou, X.;
Gong, L. Org. Lett. 2014, 16, 3332. (f) Li, C.; Li, M.; Zhong, W.; Jin,
Y.; Li, J.; Wu, W.; Jiang, H. Org. Lett. 2019, 21, 872. (g) Lin, S.;
Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc.
2008, 130, 12901. (h) Young, A. J.; White, M. C. J. Am. Chem. Soc.
2008, 130, 14090. (i) Young, A. J.; White, M. C. Angew. Chem. Int.
Ed. 2011, 50, 6824. (j) Howell, J. M.; Liu, W.; Young, A. J.; White,
M. C. J. Am. Chem. Soc. 2014, 136, 5750.
(5) Representative examples for the construction of C–N bond:
(a) Beccalli, E. M.; Broggini, G.; Paladino, G.; Penoni, A.; Zoni, C.
J. Org. Chem. 2004, 69, 5627. (b) Fraunhoffer, K. J.; White, M. C. J.
Am. Chem. Soc. 2007, 129, 7274. (c) Liu, G.; Yin, G.; Wu, L.
Angew. Chem. Int. Ed. 2008, 47, 4733. (d) Rice, G. T.; White, M. C.
J. Am. Chem. Soc. 2009, 131, 11707. (e) Nahra, F.; Liron, F.;
Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem. Eur. J. 2009,
15, 11078. (f) Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.
(g) Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.; Vermeulen, N. A.;
Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138, 1265.
(6) Representative examples for the construction of C–O bond:
(a) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J.
Am. Chem. Soc. 2006, 128, 9032. (b) Gormisky, P. E.; White, M. C.
J. Am. Chem. Soc. 2011, 133, 12584. (c) Ammann, S. E.; Rice, G. T.;
White, M. C. J. Am. Chem. Soc. 2014, 136, 10834. (d) Malik, M.;
Witkowski, G.; Jarosz, S. Org. Lett. 2014, 16, 3816. (e) Kondo, H.;
Yu, F.; Yamaguchi, J.; Liu, G.; Itami, K. Org. Lett. 2014, 16, 4212.
(f) Ayyagari, N.; Belani, J. D. Synlett 2014, 25, 2350. (g) Litman, Z.
C.; Sharma, A.; Hartwig, J. F. ACS Catal. 2017, 7, 1998.
(16) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon, M. J.
Chem. Commun. 2014, 50, 4524.
(17) (a) Lin, S.; Song, C. X.; Cai, G. X.; Wang, W. H.; Shi, Z. J. J. Am.
Chem. Soc. 2008, 130, 12901. (b) Efange, S. M.; Michelson, R. H.;
Dutta, A. K.; Parsons, S. M. J. Med. Chem. 1991, 34, 2638.
(18) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234. (b) McCann, S. D.; Stahl, S. S. Acc.
Chem. Res. 2015, 48, 1756.
(19) General Procedure for C–H Activation/C–O Bond Formation
To a solution of aryl benzene 1 (0.1 mmol, 1 equiv) in acetoni-
trile (2 mL) were added N-hydroxyimide (2, 3.0 equiv), cop-
per(II) acetate monohydrate (1.0 equiv), acetic acid (0.5 equiv),
and Pd(OAc)2 (0.1 equiv) in the same order and heated at 75 °C.
The reaction was conducted in a round-bottom flask equipped
with a reflux condenser. After 24–28 h, the reaction mass was
dried on a small mass of silica and was purified by flash chro-
matography using hexanes/EtOAc .
(E)-1-[(3-(4-Methoxyphenyl)allyl)oxy]pyrrolidine-2,5-dione
(3a)
Prepared according to the general procedure. Purification by
column chromatography (n-hexane/EtOAc, 4:1) gave 3a in 84%
yield as a white solid (mp 98–100 °C). 1H NMR (400 MHz,
CDCl3): = 7.34–7.30 (d, J = 8.6 Hz, 2 H), 6.87–6.84 (d, J = 8.7 Hz,
2 H), 6.60 (d, J = 15.9 Hz, 1 H), 6.25–6.18 (dt, J = 15.8, 7.3 Hz, 1
H), 4.77 (dd, J = 7.3, 1.0 Hz, 2 H), 3.80 (s, 3 H), 2.65 (s, 4 H). 13C
NMR (100 MHz, CDCl3): = 171.5, 160.0, 137.5, 128.4, 128.2,
119.2, 114.1, 77.7, 55.3, 25.4. HRMS: m/z calcd for C14H16NO4 [M
+ H+]: 261.1001; found: 261.1066.
(7) For use in peptide synthesis, see: (a) El-Faham, A.; Albericio, F.
Chem. Rev. 2011, 111, 6557. (b) Anderson, G. W.; Zimmerman, J.
E.; Callahan, F. M. J. Am. Chem. Soc. 1964, 86, 1839.
(c) Zimmerman, J. E.; Anderson, G. W. J. Am. Chem. Soc. 1967, 89,
7151.
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–E