Journal of the American Chemical Society
Page 6 of 8
Catal. 2017, 7, 1361–1368. (d) Longobardi, L. E. L.; Fürstner, A.;
Longobardi, L. E. L. trans‐Hydroboration of Propargyl Alcohol Derivatives
and Related Substrates. Chem. - Eur. J. 2019, 25, 10063–10068.
(12) For a copper-catalyzed indirect trans-hydroboration of internal
alkynes, see: Kim, H. R.; Yun, J. Highly regio- and stereoselective synthesis
of alkenylboronic esters by copper-catalyzed boron additions to
disubstituted alkynes. Chem. Commun. 2011, 47, 2943–2945.
Gao, R.; Pahls, D. R.; Cundari, T. R.; Yi, C. S. Experimental and
Computational Studies of the Ruthenium-Catalyzed Hydrosilylation of
Alkynes: Mechanistic Insights into the Regio- and Stereoselective Formation
of Vinylsilanes Organometallics 2014, 33, 6937–6944.
1
2
3
4
5
6
7
8
(20) For
a similar reaction of a five-coordinate 16-electron
bis(phosphine)ruthenium boryl complex, see: Clark, G. R.; Irvine, G. J.;
Roper, W. R.; Wright, L. J. Insertion of Ethyne into the Ru−B Bond of a
Coordinatively Unsaturated Ruthenium Boryl Complex. X-ray Crystal
Structure of Ru(CHCH[BOC6H4O])Cl(CO)(PPh3)2. Organometallics
1997, 16, 5499–5505.
(21) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Hydrosilylation of 1-
Hexyne Catalyzed by Rhodium and Cobalt–Rhodium Mixed-Metal
Complexes. Mechanism of Apparent Trans Addition. Organometallics 1990,
9, 3127–3133.
(22) (a) Tanke, R. S.; Crabtree, R. H. Unusual Activity and Selectivity in
Alkyne Hydrosilylation with an Iridium Catalyst Stabilized by an O-Donor
Ligand. J. Am. Chem. Soc. 1990, 112, 7984–7989. (b) Jun, C. H.; Crabtree, R.
H. Dehydrogenative Silation, Isomerization and the Control of Syn- vs. Anti-
Addition in the Hydrosilation of Alkynes. J. Organomet. Chem. 1993, 447,
117–187.
(23) In the mechanistic studies on the pertinent [RuHCl(CO)(PCy3)2]-
catalyzed (Z)-selective hydrosilylation of terminal alkynes, the
ruthenacyclopropene species could not be located as a local minimum
structure. See, ref 19d.
(24) When we monitored the progress of the reaction of 2a with H–
B(dan) in the presence of 1e as the precatalyst at 70 °C by 31P{1H} NMR
spectroscopy, we observed a signal that was tentatively assigned to H during
the catalytic turnover. For details, see the Supporting Information.
(25) For reviews, see: (a) Bukhari, S. N. A.; Kumar, G. B.; Revankar, H.
M.; Qin, H. L. Development of combretastatins as potent tubulin
polymerization inhibitors. Bioorg. Chem. 2017, 72, 130–147. (b) Liekens, S.;
Bueno, O.; Canela, M.-D.; Priego, E.-M.; Martins, M. S.; Pérez-Pérez, M.-J.
Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An
Approach to Targeting Tumor Growth. J. Med. Chem. 2016, 59, 8685–8711.
(c) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A.
Medicinal chemistry of combretastatin A4: Present and future directions. J.
Med. Chem. 2006, 49, 3033–3044.
(26) (a) Iwadate, N.; Suginome, M. Synthesis of B-Protected β-
Styrylboronic Acids via Iridium-Catalyzed Hydroboration of Alkynes with
1,8-Naphthalenediaminatoborane Leading to Iterative Synthesis of
Oligo(Phenylenevinylene)s. Org. Lett. 2009, 11, 1899–1902. (b) Noguchi,
H.; Hojo, K.; Suginome, M. Boron-Masking Strategy for the Selective
Synthesis of Oligoarenes via Iterative Suzuki-Miyaura Coupling. J. Am. Chem.
Soc. 2007, 129, 758–759.
(27) For the direct use of aryl-B(dan) derivatives, see: (a) Mutoh, Y.;
Yamamoto, K.; Saito, S. Suzuki–Miyaura Cross-Coupling of 1,8-
Diamononaphthalene (dan)-Protected Arylboronic Acids. Submitted
(Manuscript ID: cs-2019-036672). (b) Yamamoto, K.; Mutoh, Y.; Saito, S.
Suzuki–Miyaura Cross-Coupling of Aryl-B(dan). 99th Annual Meeting of
the Chemical Society of Japan, Kobe, Japan, March 15−19, 2019; Abstract 1
H5-48. (c) Seki, M.; Osaka, I.; Yoshida, H. Suzuki–Miyaura cross-coupling
reaction of dan-substituted organoboranes through direct activation of the
B(dan) moiety. 99th Annual Meeting of the Chemical Society of Japan, Kobe,
Japan, March 15−19, 2019; Abstract 2 H5-03. For the direct use of alkynyl-
B(dan) compounds, see: (d) Tsuchimoto, T.; Utsugi, H.; Sugiura, T.; Horio,
(13) For the trans-hydroboration of internal alkynes in the absence of
transition-metals, see: (a) Yuan, K.; Suzuki, N.; Mellerup, S. K.; Wang, X.;
Yamaguchi, S.; Wang, S. Pyridyl Directed Catalyst-Free trans-
Hydroboration of Internal Alkynes. Org. Lett. 2016, 18, 720–723. (b) Nagao,
K.; Yamazaki, A.; Ohmiya, H.; Sawamura, M. Phosphine-Catalyzed Anti-
Hydroboration of Internal Alkynes. Org. Lett. 2018, 20, 1861–1865. (c)
Fritzemeier, R.; Gates, A.; Guo, X.; Lin, Z.; Santos, W. L. Transition Metal-
Free Trans Hydroboration of Alkynoic Acid Derivatives: Experimental and
Theoretical Studies. J. Org. Chem. 2018, 83, 10436–10444. (d) Zi, Y.;
Schömberg, F.; Seifert, F.; Görls, H.; Vilotijevic, I. trans-Hydroboration vs.
1,2-reduction: divergent reactivity of ynones and ynoates in Lewis-base-
catalyzed reactions with pinacolborane. Org. Biomol. Chem. 2018, 16, 6341–
6349. (e) Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T.
Radical trans-Hydroboration of Alkynes with N-Heterocyclic Carbene
Boranes. Angew. Chem., Int. Ed. 2018, 57, 9485–9490. (f) Grams, R. J.;
Fritzemeier, R. G.; Slebodnick, C.; Santos, W. L. trans-Hydroboration of
Propiolamides: Access to Primary and Secondary (E)-β-Borylacrylamides.
Org. Lett. 2019, 21, 6795–6799.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14)
For
similar
reactions
and
of
an
cationic
18-electron
14-electron
bis(phosphine)rutheniumhydrido
a
rutheniumhydrido complex with a borane, see: (a) Irvine, G. J.; Roper, W.
R.; Wright, L. J. Five-Coordinate Ruthenium(II) and Osmium(II) Boryl
Complexes. Organometallics 1997, 16, 2291–2296. (b) Riddlestone, I. M.;
McKay, D.; Gutmann, M. J.; Macgregor, S. A.; Mahon, M. F.; Sparkes, H. A.;
Whittlesey, M. K. Isolation of [Ru(IPr)2(CO)H]+ (IPr = 1,3-Bis(2,6-
diisopropylphenyl)imidazol-2-ylidene) and Reactivity toward E-H (E = H,
B) Bonds. Organometallics 2016, 35, 1301–1312.
(15) For a similar reaction of a 16-electron bis(phosphine)ruthenium
hydrido complexes with terminal alkynes, see: (a) Werner, H.; Esteruelas, M.
A.; Otto, H. Insertion reactions of the 16-electron complexes
MHCl(CO)(P-i-Pr3)2 (M = Ru, Os) with alkynes. The x-ray crystal structure
of [(E)-PhCH=CHOs(Cl)(CO)(P-i-Pr3)2]. Organometallics 1986, 5,
2295–2299. (b) Jung, S.; Brandt, C. D.; Wolf, J.; Werner, H. Vinyl and
Carbene Ruthenium(II) Complexes from Hydridoruthenium(II)
Precursors. Dalton Trans. 2004, 0, 375–383.
(16)
A
similar reaction of
a
five-coordinate 16-electron
bis(phosphine)osmiumphenyl complex with catecholborane that leads to an
osmiumboryl complex has been reported, see: ref. 14a.
(17) We presume that the higher temperature is required to liberate PCy3
from 1h, which generates the catalytically active 14-electron ruthenium
complex [RuCl{B(dan)}(CO)(H2IMes)]. When we carried out phosphine
exchange reactions using 1e or 1h at 70 °C, 1e was gradually consumed,
whereas the content of 1h remained unchanged. For details, see the
Supporting Information.
(18) For selected reviews, see: (a) Zaranek, M.; Marciniec, B.; Pawluć, P.
Ruthenium-catalysed hydrosilylation of carbon-carbon multiple bonds. Org.
Chem. Front. 2016, 3, 1337–1344. (b) Roy, A. K. A Review of Recent
Progress in Catalyzed Homogeneous Hydrosilation (Hydrosilylation). Adv.
Organomet. Chem. 2007, 55, 1–59.
S. Alkynylboranes:
A
Practical Approach by Zinc-Catalyzed
(19) For selected examples, see: (a) Esteruelas, M. A.; Herrero, J.; Oro, L.
A. Exclusive formation of cis-PhCH=CH(SiEt3) by addition of triethylsilane
Dehydrogenative Coupling of Terminal Alkynes with 1,8-
Naphthalenediaminatoborane. Adv. Synth. Catal. 2015, 357, 77–82. (e) Tani,
T.; Sawatsugawa, Y.; Sano, Y.; Hirataka, Y.; Takahashi, N.; Hashimoto, S.;
Sugiura, T.; Tsuchimoto, T. Alkynyl-B(dan)s in Various Palladium-
Catalyzed Carbon-Carbon Bond-Forming Reactions Leading to Internal
Alkynes, 1,4-Enynes, Ynones, and Multiply Substituted Alkenes. Adv. Synth.
Catal. 2019, 361, 1815–1834.
to
phenylacetylene
catalyzed
by
ruthenium
complex
[(Me2CH)3P]2RuHCl(CO). Organometallics 1993, 12, 2377–2379. (b)
Maddock, S. M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Insertion of
Ethyne into the Ru−Si Bonds of Coordinatively Unsaturated Ruthenium
Silyl
Complexes.
X-ray
Crystal
Structures
of
Ru(CHCHSiMe2OEt)Cl(CO)2(PPh3)2 and [Ru(CHCHSiMe2OH)(CN-
p-tolyl)(CO)(PPh3)2]ClO4. Organometallics 1996, 15, 1793–1803. (c)
Katayama, H.; Taniguchi, K.; Sagawa, T.; Minami, T.; Ozawa, F. Ruthenium-
Catalyzed Hydrosilylation of Terminal Alkynes: Stereodivergent Synthesis
of (E)- and (Z)-Alkenylsilanes. J. Organomet. Chem. 2002, 645, 192–200. (d)
(28) (a) Chang, J.-Y.; Yang, M.-F.; Chang, C.-Y.; Chen, C.-M.; Kuo, C.-
C.; Liou, J.-P. J. Med. Chem. 2006, 49, 6412–6415. (b) Cushman, M.;
Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E.
Synthesis and evaluation of stilbene and dihydrostilbene derivatives as
ACS Paragon Plus Environment