FULL PAPERS
Florian Bächle et al.
gas at 2008C, 50 V capillary voltage). The samples were di-
luted immediately with CH3CN prior to their analysis and
measured using direct injection. The spectra were acquired
in the centroid mode. Every spectrum consisted of at least
30 scans and the selectivity was calculated from the ratios of
the peak heights of the major isotopomers of Im and Imꢀ.
H. B. Kagan, J. Am. Chem. Soc. 2003, 125, 7490–7491;
b) L. A. Evans, N. S. Hodnett, G. C. Lloyd-Jones,
Angew. Chem. 2012, 124, 1556–1564; Angew. Chem.
Int. Ed. 2012, 51, 1526–1533; c) K. D. Collins, T.
Gensch, F. Glorius, Nature Chem. 2014, 6, 859–871.
[6] For selective poisoning of one enantiomer of a racemic
catalyst, see: a) J. W. Faller, J. Parr, J. Am. Chem. Soc.
1993, 115, 804–805; b) J. W. Faller, A. R. Lavoie, J.
Parr, Chem. Rev. 2003, 103, 3345–3368.
[7] a) C. A. Müller, A. Pfaltz, Angew. Chem. 2008, 120,
3411–3414; Angew. Chem. Int. Ed. 2008, 47, 3363–3366;
b) A. Teichert, A. Pfaltz, Angew. Chem. 2008, 120,
3408–3410; Angew. Chem. Int. Ed. 2008, 47, 3360–3362;
c) C. A. Müller, C. Markert, A. M. Teichert, A. Pfaltz,
Chem. Commun. 2009, 1607–1618; d) I. Fleischer, A.
Pfaltz, Chem. Eur. J. 2010, 16, 95–99.
[8] The term ꢂquasi-enantiomericꢁ means that the com-
pounds behave like enantiomers but have different mo-
lecular masses due to mass labels introduced at posi-
tions where they do not alter the reactivity of the mole-
cule. For a review on quasi-enantiomers, see: Q.
Zhang, D. P. Curran, Chem. Eur. J. 2005, 11, 4866–4880.
[9] a) M. Yamaguchi, N. Yokota, T. Minami, J. Chem. Soc.
Chem. Commun. 1991, 1088–1089; b) S. Brandau, A.
Landa, J. Franzen, M. Marigo, K. A. Jørgensen, Angew.
Chem. 2006, 118, 4411–4415; Angew. Chem. Int. Ed.
2006, 45, 4305–4309; c) C. Palomo, A. Landa, A.
Mielgo, M. Oiarbide, A. Puente, S. Vera, Angew.
Chem. 2007, 119, 8583–8587; Angew. Chem. Int. Ed.
2007, 46, 8431–8435; d) Y. Wang, P. Li, X. Liang, J. Ye,
Adv. Synth. Catal. 2008, 350, 1383–1389; e) A. Ma, S.
Zhu, D. Ma, Tetrahedron Lett. 2008, 49, 3075–3077;
f) O. V. Maltsev, A. S. Kucherenko, S. G. Zlotin, Eur. J.
Org. Chem. 2009, 5134–5137; g) E. Alza, S. Sayalero, P.
Kasaplar, D. Almas¸i, M. A. Pericàs, Chem. Eur. J. 2011,
17, 11585–11595; h) S. K. Ghosh, K. Dhungana, A. D.
Headley, B. Ni, Org. Biomol. Chem. 2012, 10, 8322–
8325; i) K. S. Feu, A. M. Deobald, S. Narayanaperumal,
A. G. CorrÞa, M. Weber Paix¼o, Eur. J. Org. Chem.
2013, 5917–5922; j) K. Akagawa, N. Sakai, K. Kudo,
Angew. Chem. 2015, 127, 1842–1846; Angew. Chem.
Int. Ed. 2015, 54, 1822–1826.
General procedure for the ESI-MS screening of
racemic organocatalysts
A GC-vial was charged with a scalemic 3:1 mixture of (R)-2
(4.30 mg 9.38 mmol, 0.75 equiv) and (S)-2ꢀ (1.39 mg, 3.13
mmol, 0.25 equiv). The mixture was dissolved in EtOH/
CH2Cl2 (85 mL/10 mL) and a solution of the corresponding
racemic organocatalyst in EtOH (5 mL, 0.025m, 1 mol%)
was added. The mixture was stirred for 15 min at room tem-
perature. The reaction mixture was diluted with CH3CN
(1 mL) and subjected to ESI-MS analysis.
General procedure for the ESI-MS screening of
enantiopure organocatalysts
A GC-vial was charged with an equimolar mixture of (R)-2
(2.87 mg 6.25 mmol, 0.50 equiv) and (S)-2ꢀ (2.78 mg, 6.25
mmol, 0.50 equiv). The mixture was dissolved in EtOH/
CH2Cl2 (85 mL/10 mL) and a solution of the corresponding
enantiopure organocatalyst in EtOH (5 mL, 0.025m,
1 mol%) was added. The mixture was stirred for 15 min at
room temperature. The reaction mixture was diluted with
CH3CN (1 mL) and subjected to ESI-MS analysis.
Acknowledgements
Financial support of this work by the Swiss National Science
Foundation is gratefully acknowledged. We thank Dr.
Markus Neuburger (Laboratory for Chemical Crystallogra-
phy, University of Basel) for the crystal structure analysis.
References
[10] a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jør-
gensen, Angew. Chem. 2005, 117, 804–807; Angew.
Chem. Int. Ed. 2005, 44, 794–797; b) Y. Hayashi, H.
Gotoh, T. Hayashi, M. Shoji, Angew. Chem. 2005, 117,
4284–4287; Angew. Chem. Int. Ed. 2005, 44, 4212–4215.
[11] a) F.-M. Gautier, S. Jones, S. J. Martin, Org. Biomol.
Chem. 2009, 7, 229–231; b) D. Enders, H. Kipphardt, P.
Gerdes, L. BreÇa-Valle, V. Bhushan, Bull. Soc. Chim.
Belg. 1988, 97, 691.
[1] a) D. W. C. MacMillan, Nature 2008, 455, 304–308;
b) B. List, Angew. Chem. 2010, 122, 1774–1779; Angew.
Chem. Int. Ed. 2010, 49, 1730–1734; c) Science of Syn-
thesis: Asymmetric Organocatalysis, Vol. 1 (Ed.: B.
List) and Vol. 2 (Ed. K. Maruoka), Thieme, Stuttgart,
2012; d) Comprehensive Enantioselective Organocataly-
sis, Vols. 1–3 (Ed.: P. I. Dalko), Wiley-VCH, Weinheim,
2013.
[2] a) A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev.
2007, 107, 5416–5470; b) S. Mukherjee, J. W. Jang, S.
Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569;
c) B. M. Paz, H. Jiang, K. A. Jørgensen, Chem. Eur. J.
2015, 21, 1846–1853.
ˇ
[12] D. Seebach, U. Groselj, D. M. Badine, W. B. Schweizer,
A. K. Beck, Helv. Chim. Acta 2008, 91, 1999–2034.
[13] All depicted results are average values out of four in-
dependent measurements (see supporting information).
[14] The relative configuration of catalysts 7 was deter-
mined by 1H NMR comparison of the Boc-protected
amino alcohol intermediates with literature data: J. L.
Bilke, S. P. Moore, P. OꢁBrien, J. Gilday, Org. Lett.
2009, 11, 1935–1938.
[3] C. Ebner, C. A. Müller, C. Markert, A. Pfaltz, J. Am.
Chem. Soc. 2011, 133, 4710–4713.
[4] B. Dominguez, N. S. Hodnett, G. C. Lloyd-Jones,
Angew. Chem. 2001, 113, 4419–4421; Angew. Chem. Int.
Ed. 2001, 40, 4289–4291.
[5] For alternative approaches to racemic catalyst screen-
ing, see: a) F. Lagasse, M. Tsukamoto, C. J. Welch,
[15] L. J. Beeley, C. J. M. Rockell, Tetrahedron Lett. 1990,
31, 417–420.
2254
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2247 – 2254