Fig. 6(b), the brightness of the devices with a TPBI layer was
significantly increased compared with those of single-layer devices.
After the insertion of the TPBI layer, the maximum efficiency of
the DQC- and PTC-based device was largely improved to 21.7 and
25.7 cd Aꢁ1, and the corresponding maximum external quantum
efficiencies were 9.2 and 11.9%. The performance of DQC- and
PTC-based devices is far superior to those of the corresponding
mCP-based devices (the EL data are summarized in Table 2). The
star-shaped structure of molecules led to forming morphologically
stable and uniform amorphous films upon solution-process,
resulting in a dramatic improvement of the EL performance of
DQC and PTC as compared to that of mCP.
References
1 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
2 S. R. Forrest, Nature, 2004, 428, 911.
3 B. W. D’Andrade and S. R. Forrest, Adv. Mater., 2004, 16, 1585.
4 C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen and Y. Y. Chien, Adv.
Mater., 2004, 16, 61.
5 A. J. Heeger, Angew. Chem., Int. Ed., 2001, 40, 2591.
6 M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
7 M. A. Baldo, D. F. O’Brien, M. E. Thompson and S. R. Forrest,
Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 60, 14422.
8 R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li and
M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818.
9 C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo,
M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
10 V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander,
P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and
M. E. Thompson, New J. Chem., 2002, 26, 1171.
11 R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown,
S. Garon and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
12 C. L. Lee, K. B. Lee and J. J. Kim, Appl. Phys. Lett., 2000, 77, 2280.
13 S. Tokito, M. Suzuki, F. Sato, M. Kamachi and K. Shirane, Org.
Electron., 2003, 4, 105.
14 K. M. Vaeth and C. W. Tang, J. Appl. Phys., 2002, 92, 3447.
15 X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses and A. J. Heeger,
Appl. Phys. Lett., 2002, 81, 3711.
16 S.-C. Chang, G. He, F.-C. Chen, T.-F. Guo and Y. Yang, Appl. Phys.
Lett., 2001, 79, 2088.
17 N. Rehmann, D. Hertel, K. Meerholz, H. Becker and S. Heun, Appl.
Phys. Lett., 2007, 91, 103507.
18 C. H. Chien, L. R. Kung, C. H. Wu, C. F. Shu, S. Y. Chang and
Y. Chi, J. Mater. Chem., 2008, 18, 3461.
19 Y. Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin and
D. Ma, J. Mater. Chem., 2008, 18, 4091.
20 J. Ding, B. Zhang, J. Lu, Z. Xie, L. Wang, X. Jing and F. Wang, Adv.
Mater., 2009, 21, 4983.
21 K. Pichler, Philos. Trans. R. Soc. London, Ser. A, 1997, 355, 829.
22 K.-T. Wong, Y.-L. Liao, Y.-T. Lin, H.-C. Su and C.-C. Wu, Org.
Lett., 2005, 7, 5131.
23 T. Tsuzuki and S. Tokito, Appl. Phys. Lett., 2009, 94, 033302.
24 X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest and
M. E. Thompson, Chem. Mater., 2004, 16, 4743.
25 J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I. Wu and C.-H. Cheng, Adv.
Funct. Mater., 2008, 18, 485.
26 L. D. Hou, L. Duan, J. Qiao, W. Li, D. Q. Zhang and Y. Qiu, Appl.
Phys. Lett., 2008, 92, 263301.
27 M.-F. Wu, S.-J. Yeh, C.-T. Chen, H. Murayama, T. Tsuboi, W.-S. Li,
I. Chao, S.-W. Liu and J.-K. Wang, Adv. Funct. Mater., 2007, 17,
1887.
Conclusions
In summary, we have designed and synthesized two novel star-
shaped host materials, DQC and PTC, for solution processed
blue phosphorescent organic light-emitting devices that contain
carbazole and m-terphenyl units. The calculated geometries of
DQC and PTC show that the carbazole and m-terphenyl units
are significantly twisted against the phenyl core, effectively sup-
pressing molecular recrystallization and limit the extent of
conjugation, which improves the morphological stability of the
thin film and keeps the triplet energy gap at a very high level.
Utilizing those new compounds as hosts, single layer solution-
processed blue phosphorescence OLEDs with FIrpic as a dopant
show a maximum current efficiency of 12.8 cd Aꢁ1, and
a maximum external quantum efficiency of 6.5%. After a thin
TPBI layer was inserted between the light-emitting layer and the
cathode, the maximum efficiency of the devices was further
improved to 25.7 cd Aꢁ1, and a maximum external quantum
efficiency of 11.9%. The performance of DQC- and PTC-based
devices is far superior to those of the corresponding mCP-based
devices, which is outstanding for a solution-processed blue
phosphorescent OLED. Our work suggests that highly efficient
solution processed blue phosphorescence OLEDs can be ach-
ieved in the design of such host materials with high triplet energy,
excellent film-forming ability and morphological stability.
€
28 Gaussian 03 (Revision B.05), Gaussian, Inc., Wallingford CT, 2004.
29 A. Nakamura, T. Tada, M. Mizukami and S. Yagyua, Appl. Phys.
Lett., 2004, 84, 130.
30 X. H. Yang, F. Jaiser, S. Klinger and D. Neher, Appl. Phys. Lett.,
2006, 88, 021107.
Acknowledgements
31 M. K. Mathai, V. E. Choong, S. A. Choulis, B. Krummacher and
F. So, Appl. Phys. Lett., 2006, 88, 243512.
32 E. A. Plummer, A. vin Dijken, H. W. Hofstraat, L. D. Cola and
K. Brunner, Adv. Funct. Mater., 2005, 15, 281.
33 K. M. Vaeth and C. W. Tang, J. Appl. Phys., 2002, 92, 3447.
We thank the National Nature Science Foundation of China
(Grant no. 50990060) and the National Key Basic Research and
Development Program of China (Grant no. 2006CB806203,
2009CB623604) for support.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 6131–6137 | 6137