b4/b404890c/ for crystallographic data in .cif or other electronic format.
1 (a) M. A. Cinellu and G. Minghetti, Gold Bull., 2002, 35, 11; (b) M. A.
Cinellu, G. Minghetti, M. V. Pinna, S. Stoccoro, A. Zucca and M.
Manassero, J. Chem. Soc., Dalton Trans., 2000, 1261; (c) M. A. Cinellu,
G. Minghetti, M. V. Pinna, S. Stoccoro, A. Zucca, M. Manassero and M.
Sansoni, J. Chem. Soc., Dalton Trans., 1998, 1735; (d) M. A. Cinellu,
G. Minghetti, M. V. Pinna, S. Stoccoro, A. Zucca and M. Manassero,
Chem. Commun., 1998, 2397.
2 P. R. Sharp, J. Chem. Soc., Dalton Trans., 2000, 2647; P. R. Sharp,
Comments Inorg. Chem., 1999, 21, 85.
3 Active Oxygen in Chemistry, ed. C. S. Foote, J. S. Valentine, A.
Greenberg and J. F. Liebman, Chapman and Hall, London, 1995; Active
Oxygen in Biochemistry, ed. J. S. Valentine, C. S. Foote, A. Greenberg
and J. F. Liebman, Chapman and Hall, London, 1995; Biomimetic
Oxidations Catalyzed by Transition Metal Complexes, ed. B. Meunier,
Imperial College Press, London, 2000; Metal-Oxo and Metal-Peroxo
Species in Catalytic Oxidations, ed. B. Meunier, Springer, Berlin, 2000;
vol. 97; R. H. Holm, Chem. Rev., 1987, 87, 1401; L. Que, Jr. and W. B.
Tolman, Angew. Chem., Int. Ed., 2002, 41, 1114; M. Taki, S. Itoh and
S. Fukuzumi, J. Am. Chem. Soc., 2002, 124, 998 and references
therein.
4 Part of this work has been presented in oral form: M. A. Cinellu, G.
Minghetti, D. Bacciu, S. Stoccoro, A. Zucca and M. Manassero,
Abstracts of Papers, Gold 2003, New Industrial Applications of Gold,
Vancouver, Canada, September 28–October 1, 2003, No.1113.
5 Full characterization of complexes with a-methylstyrene, ethylene and
norbornene is on-going and will be reported in a full paper.
6 (a) B. Flint, J.-J. Li and P. R. Sharp, Organometallics, 2002, 21, 997; (b)
E. Szuromi, H. Shan and P. R. Sharp, J. Am. Chem. Soc., 2003, 125,
10522.
Fig. 1 ORTEP view of the [Au(bipyip)(h2-styrene)]+ cation. Ellipsoids are
drawn at the 30% probability level. Selected bond distances (Å) and angles
(°): Au–N(1) 2.150(3), Au–N(2) 2.217(5), Au–C(14) 2.114(6), Au–C(15)
2.098(5), C(14)–C(15) 1.384(8), C(14)–C(16) 1.488(6) Å, N(1)–Au–N(2)
75.1(2), N(1)–Au–C(14) 119.6(2), N(1)–Au–C(15) 157.8(2), N(2)–Au–
C(14), 165.4(2), N(2)–Au–C(15) 127.0(2), C(14)–Au–C(15) 38.4(2),
C(15)–C(14)–C(16) 126.3(5)°.
7 T. Hosokawa, M. Takano and S.-I. Murahashi, J. Am. Chem Soc., 1996,
118, 3990.
On the whole the spectroscopic and structural data, taken
together, point to a non negligible p contribution in the olefin–gold
bond.
We are grateful to the University of Sassari for financial support
(60%) and to the Regione Autonoma della Sardegna (RAS) for a
grant to M.A.C. (L.R.9/8/1950, n.43).
8 (a) M. Munakata, S. Kitagawa, S. Kosome and A. Asahara, Inorg.
Chem., 1986, 25, 2622 and references therein (b) H. Masuda, K.
Machida, M. Munakata, S. Kitagawa and H. Shimono, J. Chem. Soc.,
Dalton Trans., 1988, 1907; (c) L. Cavallo, M. E. Cucciolito, A. De
Martino, F. Giordano, I. Orabona and A. Vitagliano, Chem. Eur. J.,
2000, 6, 1127; (d) B. F. Straub, F. Eisenträger and P. Hoffmann, Chem.
Commun., 1999, 2507; (e) X. Dai and T. H. Warren, Chem. Commun.,
2001, 1998.
9 Larger values are found for analogous d10 metal complexes (M = Pd,
Pt) with more electron accepting alkenes (Dd(H) 23.0 to 23.5 ppm;
Dd(C) 290 to 2120 ppm). See for example: (a) R. van Asselt, C. J.
Elsevier, W. J. J. Smeets and A. L. Spek, Inorg. Chem., 1994, 33, 1521;
(b) K. J. Cavell, D. J. Stufken and K. Vrieze, Inorg. Chim. Acta, 1980,
47, 67; (c) M. W. van Laren, M. A. Duin, C. Klerk, M. Naglia, D.
Rogolino, P. Pelagatti, A. Bacchi, C. Pelizzi and C. J. Elsevier,
Organometallics, 2002, 21, 1546; (d) M. L. Ferrara, F. Giordano, I.
Orabona, A. Panunzi and F. Ruffo, Eur. J. Inorg. Chem., 1999, 1939; (e)
L. Canovese, F. Visentin, G. Chessa, C. Santo, P. Uguagliati, L. Maini
and M. Polito, J. Chem. Soc., Dalton Trans., 2002, 3696; (f) M. L.
Ferrara, I. Orabona, F. Ruffo, M. Funicello and A. Panunzi, Organome-
tallics, 1998, 17, 3832.
Notes and references
‡
Reactions of compounds 1a–1d with styrene. Anhydrous solvent:
styrene (2 mmol) was added to a solution of 1 (0.2 mmol) in acetonitrile (40
cm3) (1a and 1b) or acetone (40 cm3) (1c and 1d). The resulting yellow
solution was stirred for 3 days at room temperature and then filtered through
Celite. The solution was evaporated to dryness and the residue extracted
with CHCl3 (3 3 15 cm3). The combined chloroform extracts were filtered
and concentrated to a small volume. Addition of diethyl ether gave a whitish
precipitate of compound 2 (2a, 15%; 2b, 20%; 2c 25%; 2d, 45%). Unreacted
complex 1 was recovered from the insoluble residue (1a, 66%; 1b, 61%; 1c,
50%; 1d, 30%).
Aqueous solvent: to a solution of 1a (0.320 g, 0.3 mmol) in acetonitrile
(50 cm3) styrene (6 mmol) and water (5 cm3) were added. The resulting
solution was stirred under Ar for 7 days at room temperature. Concentration
of the filtered solution gave a white precipitate of 2a which was recovered
by filtration under vacuum. Recrystallization from dichloromethane gave
the analytical sample (0.130 g, 35%). Compounds 2c and 2d were obtained
similarly from 1c and 1d, respectively. In contrast to 2a, 2c and 2d were
extracted with CHCl3 (3 3 15 cm3) after evaporation to dryness of the
filtered solution. (2c, 31 %; 2d, 46%).
10 L. Canovese, F. Visentin, P. Uguagliati and B. Crociani, J. Chem. Soc.,
Dalton Trans., 1996, 1921.
11 A. J. Chalk, J. Am. Chem. Soc., 1964, 86, 4733.
12 H. Schmidbaur, A. Grohmann and M. E. Olmos in Gold Progress in
Chemistry, Biochemistry and Technology, ed. H. Schmidbaur, John
Wiley and Sons. New York, 1999, pp. 728–730; A. Grohmann and H.
Schmidbaur, ‘Gold’ in Comprehensive Organometallic Chemistry, ed.
J. L. Wardell, E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon-
Elsevier, Oxford, 1995, vol. 3, pp. 44–47; R. J. Puddephatt, ‘Gold’, in
Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A.
Stone and E. W. Abel., Pergamon Press, Oxford, 1982, vol. 2, pp.
809–812; R. J. Puddephatt, The Chemistry of Gold, Elsevier, The
Netherlands, 1978, pp. 148–151.
13 (a) M. Håkansson, H. Eriksson and S. Janger, J. Organomet. Chem.,
2000, 602, 133; (b) R. M. Dávila, R. J. Staples and J. P. Fackler, Jr.,
Organometallics, 1994, 13, 418; (c) D. Belli Dell’Amico, F. Calder-
azzo, R. Dantona, J. Strähle and H. Weiss, Organometallics, 1987, 6,
1207.
§ Crystal data for 2c·0.5MeCN: C22H23.5Au1F6N2.5P, Mr
= 664.88,
monoclinic, space group P21/c (no. 14), a = 13.717(1), b = 12.833(1), c =
15.272(2) Å, b = 114.15(1)°, U = 2453.1(4) Å3, Z = 4, dc = 1.800 g
cm23, T = 223 K, m = 61.1 cm21, F(000) = 1284. Reflections measured
33327, independent 5027 with Rint = 0.027. Final R2 (F2, all reflections) =
0.054, R2w = 0.090, conventional R1 = 0.032 for 291 variables. Bruker
SMART CCD area-detector, Mo–Ka radiation (l = 0.71073 Å), w scan
mode, qmin = 3°, qmax = 26°. Structure solved by direct methods and
refined by full-matrix least squares. Atom C(13) is disordered and split into
two half atoms, C(13a) and C(13b), with occupancy factors = 0.50; only
C(13a) has been drawn in Fig. 1. The half MeCN molecule is disordered
around an inversion centre. The programme used was Personal SDP on a
14 J. C. Cochran, K. Hagen, G. Paulen, Q. Shen, S. Tom, M. Traetteberg
and C. Wells, J. Mol. Struct., 1997, 413–414, 313.
C h e m . C o m m u n . , 2 0 0 4 , 1 6 1 8 – 1 6 1 9
1619