8808
G. Mas et al. / Tetrahedron Letters 44 (2003) 8805–8809
Professor David A. Evans (Merendero de la Mari,
Barcelona, January 1998) regarding asymmetric Michael
reactions studied in this work are also acknowledged.
J.V. dedicates this work to Prof. Enrique Mele´ndez
(Universidad de Zaragoza) and Prof. Marcial Moreno
(Universitat Auto`noma).
values are variable, according to Ref. 7. Also see: (b)
Smith, A. B.; Condon, S. M.; McCauley, J. A.; Leazer, J.
L.; Leahy, J. W.; Maleczka, R. E. J. Am. Chem. Soc. 1997,
119, 947–961. We have not checked other reported proce-
dures for the differentiation of the two carboxyl groups of
the meso-2,4-dimethylglutaric anhydride: (c) Nagao, Y.;
Inoue, T.; Fujita, E.; Terada, S.; Shiro, M. J. Org. Chem.
1983, 48, 133–134; (d) Nagao, Y.; Inoue, T.; Hashimoto,
K.; Hagiwara, Y.; Ochiai, M.; Fujita, E. J. Chem. Soc.,
Chem. Commun. 1985, 1419–1420 (formation of a bis-
amide, by using a chiral 1,3-thiazolidine-2-thione, fol-
lowed by reaction with piperidine); (e) Hiratake, J.;
Yamamoto, Y.; Oda, J. J. Chem. Soc. Chem. Commun.
1985, 1717–1719; (f) Hiratake, J.; Inagaki, M.;
Yamamoto, Y.; Oda, J. J. Chem. Soc. Perkin Trans. 1,
1987, 1053–1058 (reaction with methanol, catalysed by
cinchona alkaloids); (g) Dyer, U. C.; Robinson, J. A. J.
Chem. Soc., Perkin Trans. 1 1988, 53–59 (formation of a
hemiester and resolution by crystallisation with chiral
1-phenylethylamine). For a comparison of the ring open-
ing of cyclic meso-anhydrides catalysed by Ti-TADDO-
Lates, see: (h) Jaeschke, G.; Seebach, D. J. Org. Chem.
1998, 63, 1190–1197. Also see Ref. 3k, and references cited
therein.
References
1. (a) Lukacs, G.; Ohno, M.; Eds.; Recent Progress in the
Chemical Synthesis of Antibiotics; Springer-Verlag: Berlin,
1990; (b) Lukacs, G.; Ed.; Recent Progress in the Chemical
Synthesis of Antibiotics; Vol. 2; Springer-Verlag: Berlin,
1993; (c) Nakata, T. In Macrolide Antibiotics. Chemistry,
Biology, and Practice, 2nd ed.; Omura, S., Ed.; Academic
Press: San Diego, 2002; pp 181–284.
2. Martin, S. F.; Guinn, D. E. Synthesis 1991, 245–262.
3. (a) Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.;
Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568–1571; (b)
Schregenberger, C.; Seebach, D. Tetrahedron Lett. 1984,
25, 5881–5884; (c) Schregenberger, C.; Seebach, D. Liebigs
Ann. Chem. 1986, 2081–2103; (d) Ditrich, K.; Bube, T.;
Stu¨rmer, R.; Hoffmann, R. W. Angew. Chem., Int. Ed.
1986, 1028–1029; (e) Nicolaou, K. C.; Yue, E. W.;
Naniwa, Y.; De Riccardis, F.; Nadin, A.; Leresche, J. E.;
La Greca, S.; Yang, Z. Angew. Chem., Int. Ed. 1994, 33,
2184–2187; (f) Stoermer, D.; Caron, S.; Heathcock, C. H.
J. Org. Chem. 1996, 61, 9115–9125; (g) Schlessinger, R. H.;
Gillman, K. W. Tetrahedron Lett. 1996, 37, 1331–1334; (h)
Abiko, A.; Masamune, S. Tetrahedron Lett. 1996, 37,
1081–1084; (i) Haddad, N.; Grishko, M.; Brik, A. Tetra-
hedron Lett. 1997, 38, 6075–6078 and Ref. 11 cited therein;
(j) Andrus, M. B.; Li, W.; Keyes, R. F. J. Org. Chem. 1997,
62, 5542–5549; (k) Kocienski, P. J.; Brown, R. C. D.;
Pommier, A.; Procter, M.; Schmidt, B. J. Chem. Soc.,
Perkin Trans. 1 1998, 9–39; (l) Hoffmann, R. W.; Lazaro,
M. A.; Caturla, F.; Framery, E.; Valancogne, I.; Montal-
betti, C. A. G. N. Tetrahedron Lett. 1999, 40, 5983–5986;
(m) Hoffmann, R. W.; Caturla, F.; Lazaro, M. A.;
Framery, E.; Bernabeu, M. C.; Valancogne, I.; Montal-
betti, C. A. G. N. New J. Chem. 2000, 24, 187–194; (n)
Hoye, T. R.; Tennakoon, M. A. Org. Lett. 2000, 2,
1481–1483; (o) Carter, R. G.; Weldon, D. J. Org. Lett.
2000, 2, 3913–3916; (p) Forsyth, C. J.; Hao, J.; Aiguade´,
J. Angew. Chem., Int. Ed. 2001, 40, 3663–3667; (q) Fujita,
K.; Mori, K. Eur. J. Org. Chem. 2001, 493–502.
10. For a representative procedure, see: (a) Ishiwata, H.; Sone,
H.; Kigoshi, H.; Yamada, K. Tetrahedron 1994, 50, 12853–
12882. For reviews on asymmetric aldol reactions, see: (b)
Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1–200;
(c) Sawamura, M.; Ito, Y. In Catalytic Asymmetric Syn-
thesis; Ojima, I.; Ed.; Wiley-VCH: New York, 2000; pp
493–511; (d) Carreira, E. M. In Catalytic Asymmetric
Synthesis; Ojima, I.; Ed.; Wiley-VCH: New York, 2000;
pp 513–541.
11. (a) Oppolzer’s sultam (Oppolzer, W.; Blagg, J.; Rodriguez,
I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767–2772
and references cited therein) was treated with NaH and
glutaric anhydride in toluene at rt; the carboxyl group was
then converted into its acid chloride, by treatment with
oxalyl dichloride under standard conditions; reaction with
the anion of (S)-4-benzyl-1,3-oxazolidin-2-one (butyl-
lithium, THF, −78°C) afforded 10, in 64% overall yield. (b)
(−)-Menthol, treated with sodium hexamethyldisilylamide
(NaHMDS) in THF, and then with glutaric anhydride at
reflux, gave the expected monomenthyl ester; formation of
the acid chloride and reaction with the anion of Evans’
oxazolidinone (Cage, J. R.; Evans, D. A. Org. Synth. 1989,
68, 77–91), as above, afforded 11 in 84% yield.
4. Ishibashi, M.; Sato, M.; Kobayashi, J. J. Org. Chem. 1993,
58, 6928–6929.
5. Mas, G. Aproximacio´ a la s´ıntesi enantioselectiva de
l’amfidinolida K, Doctorate Thesis; Universitat de
Barcelona, 1997–2000.
6. In the meantime, an elegant total synthesis of (+)-amphidi-
nolide K has been achieved: (a) Williams, D. R.; Meyer,
K. G. J. Am. Chem. Soc. 2001, 123, 765–766. Thanks are
due to Professor Williams for communicating these results
before publication.
7. Ozegowski, R.; Kunath, A.; Schick, H. Tetrahedron:
Asymmetry 1993, 4, 695–698 and references cited therein.
8. Hoffmann, R. W.; Zeiss, H.-J.; Ladner, W.; Tabche, S.
Chem. Ber. 1982, 115, 2357–2370.
12. Evans, D. A.; Bilodeau, M. T.; Somers, T. C.; Clardy, J.;
Cherry, D.; Kato, Y. J. Org. Chem. 1991, 56, 5750–5752.
13. There is a previous report on the double alkylation of
dicarboxyl derivatives (hexanedioic acid and higher homo-
logues), with two of Evans’ oxazolidinones as chiral
auxiliaries: Trova, M. P.; Wang, Y. Tetrahedron 1993, 49,
4147–4158.
14. The 1H NMR signal at l 3.01 (t, J=7.2, 2H), correspond-
ing to the CH2CO group linked to Evans’ auxiliary of the
starting material (10), was shifted to l 3.80–3.72 (m, 1H)
in the methylation product, whereas the signal at 2.84 (t,
J=7.2, 2H), due to the CH2CO group linked to Oppolzer’s
auxiliary, remained. Only one new methyl signal appeared,
at 1.25 ppm (d, J=6.9, 3H). Comparison of the 13C NMR
spectra and MS corroborated that the major compound
was the monomethylated product.
9. (a) Enzyme-catalysed desymmetrisation of meso-2,4-
dimethylglutaric acid derivatives is also feasible, but the ee