S. GowriSankar et al. / Tetrahedron Letters 45 (2004) 6141–6146
6145
Stabile, P.; Mannina, L. Tetrahedron 2003, 59, 2067; (b)
Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936; (c)
Yao, T.; Larock, R. C. Tetrahedron Lett. 2002, 43, 7401;
(d) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem.
1999, 64, 8770; (e) Biagetti, M.; Bellina, F.; Carpita, A.;
Stabile, P.; Rossi, R. Tetrahedron 2002, 58, 5023; (f)
Oliver, M. A.; Gandour, R. D. J. Org. Chem. 1984, 49,
558.
7.68 (s, 4H), 7.85 (s, 1H); 13C NMR (CDCl3) d 18.86,
52.36, 81.05, 87.06, 123.58, 127.06, 127.27, 127.57, 127.74,
127.81, 128.16, 128.88, 130.35, 131.72, 133.88, 140.23,
140.33, 141.82, 167.74; Mass (70 eV) m=z (rel. intensity)
115 (100), 165 (50), 293 (66), 337 (37), 352 (Mþ, 30). 2g: 1H
NMR (CDCl3) d 1.82 (t, J ¼ 2:4 Hz, 3H), 3.32 (q,
J ¼ 2:4 Hz, 2H), 3.86 (s, 3H), 7.32–7.56 (m, 5H), 7.73 (s,
1H); 13C NMR (CDCl3) d 3.70, 18.06, 52.25, 76.22, 76.25,
128.43, 128.54, 128.90, 129.67, 135.02, 140.04, 167.86. 2h:
IR (neat) 1716, 1281, 1219 cmꢀ1; 1H NMR (CDCl3) d 1.81
(t, J ¼ 2:7 Hz, 3H), 3.28 (q, J ¼ 2:7 Hz, 2H), 3.86 (s, 3H),
7.37–7.50 (m, 4H), 7.66 (s, 1H); 13C NMR (CDCl3) d 3.67,
18.00, 52.33, 75.85, 76.58, 128.80, 128.93, 130.98, 133.39,
134.91, 138.69, 167.59; Mass (70 eV) m=z (rel. intensity) 43
(100), 153 (79), 189 (35), 213 (23), 248 (Mþ, 22). Synthesis
of 3a as a typicalprocedure: To a stirred soul tion of the
acetylenic compound 2a (276 mg, 1 mmol) in CH2Cl2
(5 mL) was added H2SO4 (12 mg, 1.2 mmol) at 0 ꢁC and
stirred at room temperature for 8 h. After usualaqueous
workup process and column chromatographic purification
process (hexanes/ether, 99:1) we obtained the desired
products 3a as an oil, 113 mg (41%). The other compounds
were synthesized similarly and the spectroscopic data are
7. In some cases, the purified compounds 2 have some
inseparable impurities and made the next step problem-
atic. In those cases (entries 1–3 and entry 5) we used CuI
(10 mol%) during the preparation of 2 and we could
obtain pure compounds.
8. For the chemistry of benzocycloheptene and related
systems, see: (a) Perron-Sierra, F.; Dizier, D. S.; Bertrand,
M.; Genton, A.; Tucker, G. C.; Casara, P. Bioorg. Med.
Chem. Lett. 2002, 12, 3291; (b) Kirmse, W.; Sluma, H.-D.
J. Org. Chem. 1988, 53, 763; (c) Bonvallet, P. A.; Todd, E.
M.; Kim, Y. S.; McMahon, R. J. J. Org. Chem. 2002, 67,
9031; (d) Ewing, G. D.; Paquette, L. A. J. Org. Chem.
1975, 40, 2965; (e) Battye, P. J.; Jones, D. W. J. Chem.
Soc., Chem. Commun. 1984, 1458; (f) Saito, K.; Ishihara,
H. Bull. Chem. Soc. Jpn. 1985, 58, 2664; (g) Pomerantz,
M.; Gruber, G. W. J. Am. Chem. Soc. 1967, 89, 6798; (h)
Saito, K.; Ishihara, H. Bull. Chem. Soc. Jpn. 1987, 60,
4447; (i) Kryczka, B.; Descotes, G. Bull. Pol. Acad. Sci.
1986, 33, 475; (j) Buu-Hoi, N. P.; Jacquignon, P.; Roussel,
O. Bull. Soc. Chim. Fr. 1962, 1652; (k) Huisgen, R.; Juppe,
G. Chem. Ber. 1961, 94, 2332.
1
as follows. 3a: IR (neat) 1712, 1277, 1203 cmꢀ1; H NMR
(CDCl3) d 2.78 (d, J ¼ 7:5 Hz, 2H), 3.83 (s, 3H), 6.12 (t,
J ¼ 7:5 Hz, 1H), 7.13–7.59 (m, 9H), 7.77 (s, 1H); 13C
NMR (CDCl3) d 24.93, 52.13, 126.58, 127.16, 127.21,
127.58, 128.09, 129.01, 130.24, 131.15, 132.38, 136.11,
137.65, 139.57, 141.78, 142.91, 166.65; Mass (70 eV) m=z
(rel. intensity) 43 (100), 202 (1), 215 (2), 275 (Mþ)1, 1). 3b:
IR (neat) 1709, 1277, 1200 cmꢀ1; 1H NMR (CDCl3) d 2.29
(s, 3H), 2.77 (d, J ¼ 7:5 Hz, 2H), 3.82 (s, 3H), 6.09 (t,
J ¼ 7:5 Hz, 1H), 7.07–7.41 (m, 8H), 7.75 (s, 1H); 13C
NMR (CDCl3) d 21.38, 24.96, 52.05, 127.07, 127.38,
127.76, 128.07, 128.98, 130.25, 131.32, 131.36, 133.58,
137.23, 137.79, 139.46, 141.68, 143.03, 166.72; Mass
(70 eV) m=z (rel. intensity) 43 (100), 107 (53), 215 (45),
9. Synthesis of 2a as a typicalprocedure: To a stirred
solution of the Baylis–Hillman acetate 1a (234 mg,
1 mmol) in dry THF (2 mL) was added CuI (20 mg,
10 mol%). To the reaction mixture was added dropwise
the solution of phenylethynylmagnesium bromide (1 M
solution in THF, 1.5 mL, 1.5 mmol) at 0 ꢁC and stirred
further at room temperature for 8 h. After usualaqueous
workup process and column chromatographic purification
process (hexanes/ether, 99:1) we obtained the desired
products 2a as an oil, 141 mg (51%). The other compounds
were synthesized similarly and the spectroscopic data are
1
231 (24), 290 (Mþ, 25). 3c: H NMR (CDCl3) d 2.78 (d,
J ¼ 7:5 Hz, 2H), 3.83 (s, 3H), 6.14 (t, J ¼ 7:5 Hz, 1H),
7.12–7.45 (m, 8H), 7.71 (s, 1H); 13C NMR (CDCl3) d
24.91, 52.20, 126.93, 127.48, 128.30, 128.54, 128.94,
130.68, 131.60, 132.65, 133.07, 134.53, 136.58, 140.93,
141.10, 142.14, 166.38; Mass (70 eV) m=z (rel. intensity) 94
(59), 107 (92), 251 (23), 310 (Mþ, 21), 312 (Mþ+2, 8). 3d:
IR (neat) 1712, 1269, 1203 cmꢀ1; 1H NMR (CDCl3) d 2.75
(d, J ¼ 7:5 Hz, 2H), 3.84 (s, 3H), 6.22 (t, J ¼ 7:5 Hz, 1H),
7.11–7.44 (m, 8H), 7.97 (s, 1H); 13C NMR (CDCl3) d
25.12, 52.25, 127.32, 127.64, 127.73, 128.17, 128.88,
129.56, 129.64, 133.20, 133.54, 133.90, 134.40, 141.20,
141.36, 142.46, 166.25; Mass (70 eV) m=z (rel. intensity) 94
(55), 107 (100), 215 (99), 251 (26), 310 (Mþ, 18), 312
1
as follows. 2a: IR (neat) 2950, 1712, 1273, 1219 cmꢀ1; H
NMR (CDCl3) d 3.61 (s, 2H), 3.88 (s, 3H), 7.24–7.61 (m,
10H), 7.81 (s, 1H); 13C NMR (CDCl3) d 18.76, 52.35,
80.94, 87.09, 123.59, 127.69, 127.79, 128.14, 128.63,
129.04, 129.72, 131.71, 134.94, 140.72, 167.73; Mass
(70 eV) m=z (rel. intensity) 115 (56), 202 (47), 215 (100),
1
261 (30), 276 (Mþ, 19). 2b: H NMR (CDCl3) d 2.38 (s,
3H), 3.61 (s, 2H), 3.86 (s, 3H), 7.23–7.51 (m, 9H), 7.78 (s,
1H); 13C NMR (CDCl3) d 18.79, 21.41, 52.29, 80.87, 87.25,
123.68, 126.78, 127.77, 128.15, 129.39, 129.86, 131.73,
132.12, 139.34, 140.81, 167.89; Mass (70 eV) m=z (rel.
1
1
intensity) 43 (100), 115 (8), 215 (10), 290 (Mþ, 1). 2c: H
(Mþ+2, 8). 3e: IR (neat) 2962, 1716, 1265, 1092 cmꢀ1; H
NMR (CDCl3) d 3.58 (s, 2H), 3.88 (s, 3H), 7.25–7.55 (m,
9H), 7.75 (s, 1H); 13C NMR (CDCl3) d 18.71, 52.43, 81.25,
86.63, 123.41, 127.91, 128.18, 128.26, 128.91, 131.02,
131.69, 133.35, 135.10, 139.37, 167.47. 2d: IR (neat)
NMR (CDCl3) d 2.75 (d, J ¼ 7:5 Hz, 2H), 3.84 (s, 3H),
6.24 (t, J ¼ 7:5 Hz, 1H), 7.10–7.45 (m, 7H), 7.89 (s, 1H);
13C NMR (CDCl3) d 25.15, 52.36, 127.65, 127.72, 128.40,
128.85, 129.34, 130.53, 132.42, 132.47, 132.93, 133.81,
135.18, 140.46, 141.75, 142.31, 166.04; Mass (70 eV) m=z
(rel. intensity) 106 (81), 215 (100), 249 (53), 285 (36), 344
(Mþ, 41), 346 (Mþ+2, 29). 3f: IR (neat) 1709, 1277,
2951, 1720, 1288, 1211 cmꢀ1 1H NMR (CDCl3) d 3.50
;
(s, 2H), 3.88 (s, 3H), 7.23–7.70 (m, 9H), 7.90 (s, 1H); 13C
NMR (CDCl3) d 18.82, 52.29, 81.18, 86.75, 123.39, 126.72,
127.75, 128.06, 129.52 (2C), 130.01, 130.36, 131.56, 133.42,
134.17, 137.42, 166.98; Mass (70 eV) m=z (rel. intensity)
107 (52), 115 (73), 215 (100), 275 (29), 310 (Mþ, 10), 312
1
1207 cmꢀ1; H NMR (CDCl3) d 2.83 (d, J ¼ 7:5 Hz, 2H),
3.84 (s, 3H), 6.16 (t, J ¼ 7:5 Hz, 1H), 7.18–7.58 (m, 13H),
7.81 (s, 1H); 13C NMR (CDCl3) d 25.04, 52.13, 125.41,
127.13, 127.23, 127.58, 127.66, 128.17, 128.75, 128.95,
129.63, 130.84, 132.20, 135.15, 137.42, 139.84, 139.96,
140.24, 141.78, 142.77, 166.62; Mass (70 eV) m=z (rel.
intensity) 91 (56), 144 (67), 215 (49), 293 (82), 352 (Mþ,
100). 3g: 1H NMR (CDCl3) d 2.13 (s, 3H), 2.61 (d,
J ¼ 7:2 Hz, 2H), 3.83 (s, 3H), 5.86 (t, J ¼ 7:2 Hz, 1H),
1
(Mþ +2, 3). 2e: H NMR (CDCl3) d 3.48 (s, 2H), 3.89 (s,
3H), 7.19–7.41 (m, 6H), 7.46 (d, J ¼ 2:1 Hz, 1H), 7.64 (d,
J ¼ 8:1 Hz, 1H), 7.82 (s, 1H); 13C NMR (CDCl3) d 18.95,
52.54, 81.58, 86.45, 123.35, 127.27, 127.98, 128.22, 129.58,
130.19, 131.27, 131.68, 132.10, 135.07, 135.43, 136.41,
166.93. 2f: IR (neat) 1712, 1277, 1208 cmꢀ1
;
1H NMR
1
(CDCl3) d 3.66 (s, 2H), 3.89 (s, 3H), 7.24–7.64 (m, 10H),
7.31–7.63 (m, 4H), 7.66 (s, 1H). 3h: H NMR (CDCl3) d