Dalton Transactions
Paper
7 K. Tamao, T. Hayashi and Y. Ito, Organometallics, 1992, 11, 20 B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés,
2099–2114.
J. Echeverría, E. Cremades, F. Barragán and S. Alvarez,
Dalton Trans., 2008, 21, 2832–2838.
21 (a) A. F. Holleman, E. Wiberg and N. Wiberg, Lehrbuch der
Anorganischen Chemie, de Gruyter, Berlin, 1985, pp. 91–100;
(b) G. Dierker, J. Ugolotti, G. Kehr, R. Fröhlich and
G. Erker, Adv. Synth. Catal., 2009, 351, 1080–1088.
8 S. Aoyagi, K. Tanaka and Y. Takeuchi, J. Chem. Soc., Perkin.
Trans. 2, 1994, 1549–1553.
9 R. Altmann, O. Gausset, D. Horn, K. Jurkschat and
M. Schürmann, Organometallics, 2000, 19, 430–443.
10 (a) K. Tamao, T. Hayashi and Y. Ito, J. Organomet. Chem.,
1996, 506, 85–91; (b) Y. Kim, M. Kim and F. P. Gabbaï, 22 A. A. Anisimov, Y. N. Kononevich, A. A. Korlyukov,
Org. Lett., 2010, 12, 600–602; (c) A. Kawachi, A. Tani,
J. Shimada and Y. Yamamoto, J. Am. Chem. Soc., 2008, 130,
4222–4223.
D. E. Arkhipov, E. G. Kononova, A. S. Peregudov,
O. I. Shchegolikhina and A. M. Muzafarov, J. Organomet.
Chem., 2014, 772, 79–83.
11 D. Dakternieks, A. Duthie, R. Altmann, K. Jurkschat and 23 S. W. Carr, M. Motevalli, D. L. Ou and A. C. Sullivan,
M. Schürmann, Organometallics, 1998, 17, 5858–5866. J. Mater. Chem., 1997, 7, 865–872.
12 (a) R. Panisch, M. Bolte and T. Müller, J. Am. Chem. Soc., 24 (a) N. W. Mitzel, P. T. Brain, M. Hofmann, D. W. H. Rankin,
2006, 128, 9676–9682; (b) C. L. Dorsey and F. P. Gabbaï,
Organometallics, 2008, 27, 3065–3069.
13 D. Dakternieks, A. Duthie, R. Altmann, K. Jurkschat and
M. Schürmann, Organometallics, 1997, 16, 5716–5723.
14 A. S. Wendji, C. Dietz, S. Kühn, M. Lutter, D. Schollmeyer,
W. Hiller and K. Jurkschat, Chem. – Eur. J., 2016, 22, 404–416.
R. Schröck and H. Schmidbaur, Z. Naturforsch., 2002, 57B,
202–214; (b) B. F. Johnston, N. W. Mitzel, D. W. H. Rankin,
H. E. Robertson, C. Rüdinger and H. Schmidbaur,
Dalton Trans., 2005, 2292–2299; (c) J. E. Laska, P. Kaszynski
and S. J. Jacobs, Organometallics, 1998, 17, 2018–
2026.
15 (a) E. Weisheim, B. Neumann, H.-G. Stammler and 25 N. W. Mitzel, K. Vojinovic, T. Foerster, H. E. Robertson,
N. W. Mitzel, Z. Anorg. Allg. Chem., 2016, 642, 329–334;
(b) E. Weisheim, L. Büker, B. Neumann, H.-G. Stammler
K. B. Borisenko and D. W. H. Rankin, Chem. – Eur. J., 2005,
11, 5114–5125.
and N. W. Mitzel, Dalton Trans., 2016, 45, 198–207; 26 (a) B. N. Menshutkin, Zh. Russ. Fiz. Khim. Ova. Chast.
(c) E. Weisheim, C. G. Reuter, P. Heinrichs,
Y. V. Vishnevskiy, A. Mix, B. Neumann, H.-G. Stammler and
N. W. Mitzel, Chem. – Eur. J., 2015, 21, 12436–12448;
(d) E. Weisheim, H.-G. Stammler and N. W. Mitzel,
Z. Naturforsch., B: Chem. Sci., 2016, 71, 77–79.
Khim., 1911, 43, 1298; (b) W. Smith and G. W. Davis,
J. Chem. Soc. Trans., 1882, 41, 411; (c) G. Peyronel,
S. Buggani and I. M. Vezzosi, Gazz. Chim. Ital., 1968, 98,
147; (d) G. Bombieri, G. Peyronel and I. M. Vezzosi, Inorg.
Chim. Acta, 1972, 6, 349; (e) A. Demalde, A. Mangia,
M. Nardelli, G. Pelizzi and M. E. Vidoni Tani, Acta
Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 1972,
28, 147; (f) J. T. Szyamnski and R. Hulme, Acta. Crystallogr.,
Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, 28, 753;
(g) S. Pohl, W. Saak and D. Haase, Angew. Chem., 1987, 99,
462, (Angew. Chem., Int. Ed. Engl., 1987, 26, 467);
(h) H. Schmidbaur, R. Nowak, B. Huber and G. Müller,
Organometallics, 1987, 6, 2266.
16 (a) J.-H. Lamm, J. Horstmann, H.-G. Stammler,
N. W. Mitzel, Y. A. Zhabanov, N. V. Tverdova, A. A. Otlyotov,
N. I. Giricheva and G. V. Girichev, Org. Biomol. Chem.,
2015, 13, 8893–8905; (b) A. Nieland, J.-H. Lamm, A. Mix,
B. Neumann, H.-G. Stammler and N. W. Mitzel, Z. Anorg.
Allg. Chem., 2014, 640, 2484–2491; (c) J.-H. Lamm,
J. Glatthor, J.-H. Weddeling, A. Mix, J. Chmiel,
B. Neumann, H.-G. Stammler and N. W. Mitzel, Org.
Biomol. Chem., 2014, 12, 7355–7365.
27 F. H. Carr and E. A. Price, Biochem. J., 1926, 20, 497–501.
17 E. Weisheim, A. Schwartzen, L. Kuhlmann, B. Neumann, 28 (a) V. Plack, P. Sakhaii, A. Fischer, P. G. Jones,
H.-G. Stammler and N. W. Mitzel, Eur. J. Inorg. Chem.,
2016, 16, 1257–1266.
18 (a) U. Krüerke, J. Organomet. Chem., 1970, 21, 83–90;
(b) S. D. Rosenberg, J. J. Walburn, T. D. Stankovich,
R. Schmutzler, K. Tamao and G.-R. Sun, J. Organomet.
Chem., 1998, 553, 111–114; (b) H. Sakurai, Y. Nakadaira,
H. Tobita, T. Ito, K. Toriumi and H. Ito, J. Am. Chem. Soc.,
1982, 104, 300–302.
A. E. Balint and H. E. Ramsden, J. Org. Chem., 1957, 22, 29 N. Rani, P. Sengupta, A. K. Singh and R. J. Butcher,
1200–1202; (c) M. Fischer and R. Tacke, Organometallics,
2013, 32, 7181–7185.
Polyhedron, 2007, 26, 5477–5483.
30 R. Pietschnig and K. Merz, Chem. Commun., 2001, 1210–
19 Dichlorodiphenylsilane (97%) must be distilled freshly to
1211.
inhibit the formation of any volatile byproducts. The 31 (a) C. Chuit, R. J. P. Corriu, C. Reye and J. C. Young, Chem.
cheaper reaction route is a single deprotonation of acety-
lene gas with n-BuLi at −30 °C followed by the addition of
dichlorodiphenylsilane in THF. To separate the acetylene
from the acetone contained the gas cylinder, we used two
−78 °C cooling traps (CAUTION: the traps must not be in
Rev., 1993, 93, 1371–1448; (b) R. Damrauer, B. O’Connell,
S. E. Danahey and R. Simon, Organometallics, 1989, 5,
1167–1171; (c) S. Spirk, F. Belaj, M. Nieger, H. Köfeler,
G. N. Rechberger and R. Pietschnig, Chem. – Eur. J., 2009,
15, 9521–9529.
order to prohibit the condensation of acetylene and avoid 32 Albeit THF was reported to be used, the crystal structure of
the resulting explosion hazard). However, the use of the
Grignard species enhanced the yield from 70 to 91%.
heptafluorotrisilacyclohexane anion displays a dichloro-
methane molecule.5.
This journal is © The Royal Society of Chemistry 2017
Dalton Trans.