10.1002/anie.201813075
Angewandte Chemie International Edition
COMMUNICATION
Table 1. Gas sorption properties of CQNs prepared at different temperatures and ZnCl2 concentrations.
[a]
[b]
[c]
[d]
[f]
[g]
Temp.
[oC]
ZnCl2
Eq.
SABET
SALang.
VTotal
SAMicro
CO2 at 273K[e]
CO2 at 298K[e]
Qst for CO2
[kJ mol-1]
CO2/N2
CQNs
[m2 g-1]
[m2 g-1]
[cm3 g-1]
[m2 g-1]
[mmol g-1] (wt %)
[mmol g-1] (wt %)
Selectivity
CQN-1a
CQN-1b
CQN-1c
CQN-1d
CQN-1e
CQN-1f
CQN-1g
300
350
400
400
400
400
400
1.0
1.0
1.0
2.5
5.0
7.5
10
229
328
279
386
0.13
0.16
0.31
0.60
0.79
0.86
0.93
122
234
-
-
-
-
-
-
-
-
664
779
480
4.10 (18.0)
5.63 (24.8)
6.58 (29.0)
6.50 (28.6)
7.16 (31.5)
2.96 (13.0)
3.78 (16.6)
4.39 (19.3)
4.18 (18.4)
4.57 (20.1)
35.5
34.6
41.7
40.1
40.6
74.7
54.1
44.6
43.5
42.7
1249
1647
1749
1870
1467
1931
2068
2213
891
1190
1183
1264
[a] The calculated BET surface areas of CQNs from N2 adsorption isotherms (77 K) using the relative pressure ranges determined according to Rouquerol
plots (Figure S21and S22). [b] Langmuir surface area of CQNs. [c] Total pore volumes at P/Po=0.99. [d] The micropore surface areas of CQNs calculated
using t-plot analysis. [e] CO2 uptake values of CQNs at 1 bar, the values in parentheses are the CO2 uptakes at weight percent (wt %) at 1 bar. [f] The isosteric
heat of adsorption of CQNs for CO2 obtained from the CO2 isotherms collected at 273, 283 and 298 K. [g] The CO2/N2 selectivity of CQNs at 298 K calculated
using IAST for the gas mixture CO2/N2:10/90 (v/v).
and 298 K) using the Clausius–Clapeyron equation (Figure 4e).
The CQNs show high Qst values in the range of 35 to 43 kJ mol-1
at zero loading and the high loading affinity stays between 21-23
kJ mol-1. In addition to the Qst values for CO2 of CQNs that are in
the range of a physisorptive adsorption mechanism (lower than
43 kJ mol-1), the reversible CO2 isotherms also suggest a
physisorption process (Figure S23).
functional features, we suggest that CQNs will attract great
interest. The simple preparation of variable organic building
blocks and the easy ionothermal polymerization strategy will
help in the synthesis of new CQNs derivatives, which may also
have uses as catalysts and energy storage materials.
Acknowledgements
These findings have motivated us to investigate the
CO2/N2 selectivities of CQNs by simulating flue gas conditions.
The selectivities were calculated according to ideal adsorption
solution theory (IAST) using CO2 and N2 isotherms measured at
298 K for a mixture of CO2 and N2 with a ratio of 10/90 (v/v)
(Figure 4f). The CQN-1c exhibited the highest CO2/N2 selectivity
of 74.7 at 1 bar whereas the COF-1g, which has the highest CO2
uptake capacity, showed the lowest selectivity (40.6) (Table 1).
Two of the parameters that affect the CO2/N2 selectivity is the
higher polarizability and quadrupole moment of CO2 molecules
compared to N2. This polarizability difference helps achieve a
higher interaction between polar adsorbents and CO2 molecules,
and this affinity contributes to the CO2/N2 selectivity. Another
important parameter is the pore size, which plays a dominant
role in the selectivity by a molecular sieving effect. However, the
kinetic diameter difference between CO2 and N2 molecules is
about 0.34 Å and it is highly challenging to achieve such pore
size control, especially in amorphous materials. Although CQNs
are microporous and have a high CO2 affinity, their pore size
distribution does not allow for a perfect sieving mechanism. This
clearly explains the lowering of the selectivity of CQNs with
increasing surface area in which more N2 molecules can be
accommodated. However, the kinetics of adsorption should also
be taken into consideration since the narrow pore size leads to a
slow adsorption rate.
In summary, we have demonstrated for the first time the
design and synthesis of covalent quinazoline networks (CQNs).
In addition to their high chemical and thermal stability, they
showed a surface area greater than 1800 m2 g-1 along with large
pore volumes up to 0.93 cm3 g-1. They also exhibited an
excellent CO2 uptake capacity of up to 7.16 mmol g-1 at 273 K
and 1 bar. Their high CO2 affinity and microporous nature
contribute to their high CO2/N2 selectivity up to 74.7 (298 K and
1 bar) under flue gas conditions. These results suggest that they
are promising materials for gas adsorption and separation
applications. Because of their characteristic structural and
This work is supported by IBS-R019-D1.
Keywords: • microporous • polymer • ionothermal • quinazoline
• CO2 capture
[1] A. G. Slater, A. I. Cooper, Science 2015, 348, aaa8075.
[2] a) M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh,
J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Chem. Soc. Rev. 2018, 47,
2680-2721; b) X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, B.-
L. Su, Chem. Soc. Rev. 2017, 46, 481-558; c) H.-C. J. Zhou, S. Kitagawa,
Chem. Soc. Rev. 2014, 43, 5415-5418; d) T.-H. Chen, I. Popov, W.
Kaveevivitchai, O. Š. Miljanić, Chem. Mater. 2014, 26, 4322-4325.
[3] a) P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal, 2011, 1, 819-835; b) S.
Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 2017, 117, 1515-1563; c)
D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012,
112, 3959-4015.
[4] a) A. I. Cooper, Adv. Mater. 2009, 21, 1291-1295; b) T. Ben, H. Ren, S.
Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S.
Qiu, G. Zhu, Angew. Chem. Int. Ed. 2009, 48, 9457-9460; Angew. Chem.
2009, 121, 9621-9624; c) X. Zhu, C. Tian, T. Jin, J. Wang, S. M. Mahurin,
W. Mei, Y. Xiong, J. Hu, X. Feng, H. Liu, S. Dai, Chem. Commun. 2014,
50, 15055-15058; d) L. Tan, B. Tan, Chem. Soc. Rev. 2017, 46, 3322-
3356; e) M. Rose, N. Klein, I. Senkovska, C. Schrage, P. Wollmann, W.
Böhlmann, B. Böhringer, S. Fichtner, S. Kaskel, J. Mater. Chem. 2011, 21,
711-716; f) N. Keller, D. Bessinger, S. Reuter, M. Calik, L. Ascherl, F. C.
Hanusch, F. Auras, T. Bein, J. Am. Chem. Soc. 2017, 139, 8194-8199; g)
N. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675-683; h) O.
Buyukcakir, S. H. Je, J. Park, H. A. Patel, Y. Jung, C. T. Yavuz, A.
Coskun, Chem. Eur. J. 2015, 21, 15320-15327.
[5] A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M.
Yaghi, Science 2005, 310, 1166-1170.
[6] a) S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R.
Banerjee, J. Am. Chem. Soc. 2012, 134, 19524-19527; b) F. J. Uribe-
Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, O. M. Yaghi, J.
Am. Chem. Soc. 2009, 131, 4570-4571; c) E. Vitaku, W. R. Dichtel, J. Am.
Chem. Soc. 2017, 139, 12911-12914; d) H. Xu, J. Gao, D. Jiang, Nat.
Chem. 2015, 7, 905-912.
[7] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47,
3450-3453; Angew. Chem. 2008, 120, 3499-3502.
[8] a) M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater.
2010, 22, 2202-2205; b) P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A.
Thomas, Chem. Mater. 2013, 25, 1542-1548; c) S. Hug, M. E. Tauchert,
S. Li, U. E. Pachmayr, B. V. Lotsch, J. Mater. Chem. 2012, 22, 13956-
13964; d) X. Zhu, C. Tian, G. M. Veith, C. W. Abney, J. Dehaudt, S. Dai, J.
Am. Chem. Soc. 2016, 138, 11497-11500; e) K. Schwinghammer, S. Hug,
M. B. Mesch, J. Senker, B. V. Lotsch, Energy Environ. Sci. 2015, 8, 3345-
3353; f) S. Kuecken, J. Schmidt, L. Zhi, A. Thomas, J. Mater. Chem. A
2015, 3, 24422-24427.
This article is protected by copyright. All rights reserved.