1978, 8, 381; (l) W. E. Lindsell and R. A. Parr, Polyhedron, 1986, 5,
1259.
6 K.-H. Wu and H.-M. Gau, J. Am. Chem. Soc., 2006, 128, 14808.
7 (a) D. Wisniewska, Z. Janas, P. Sobota and L. B. Jerzykiewicz,
Organometallics, 2006, 25, 6166; (b) Z. Janas, L. B. Jerzykiewicz, P.
Sobota, K. Szczegot and D. Wioniewska, Organometallics, 2005, 24,
3987.
26 D. C. Bradley and M. J. Hillyer, Trans. Faraday Soc., 1966, 62, 2374.
27 (a) The structurally-characterized heterometallic complexes contain-
ing the Al(l-O)Ti bond: TiAl2(OiPr)10 see ref. 5b, d TiBr2(Salen)-
AlMe2AlMe2Br and TiCl2(Salen)AlMe2AlMe2Br (SalenH2 = N,N-
bis(salicylidene)ethylenediamine); (b) S. J. Coles, M. B. Hursthouse,
D. G. Kelly, A. J. Toner and N. M. Walker, J. Organomet. Chem., 1999,
580, 304.
28 (a) K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90,
969; (b) D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxides,
Academic Press, London, 1978, and references cited therein; (c) A. H.
Cowley and R. A. Jones, Angew. Chem., 1989, 101, 1235, (Angew.
Chem., Int. Ed. Engl., 1989, 28, 1208); (d) W. A. Herrmann, N. W.
Huber and O. Runte, Angew. Chem., 1995, 107, 2371, (Angew. Chem.,
Int. Ed. Engl., 1995, 34, 2187).
29 D. L. Hildenbrand, High Temp. Mater. Sci., 1996, 35, 151.
30 Bond dissociation energy of Ti–Cl bond varied from 388 kJ mol−1
forTiCl4 to 508 kJ mol−1 for TiCl2.29 The values for the Ti(IV) complex
taken from ref. 22 and 29 were used in the estimation.
31 (a) M. Kh. Karapetyants and M. L. Karapetyants, Thermodynamic
Constants of Inorganic and Organic Compounds, Humphrey Science
Publ., Ann Arbor, 1970; (b) Table 4 in: A. Haaland, A. Hammel, K.-G.
Martinsen, J. Tremmel and H. V. Volden, J. Chem. Soc., Dalton Trans.,
1992, 2209.
8 Compound 2 was examined by X-ray structural analysis.§ The con-
nectivity of 2 was established, but the quality of the crystal was not
sufficient to refine the structure completely. Crystallographic data for
2 at 133(2) K: Empirical formula C58H81N4, Mr = 833.76, triclinic,
˚
˚
˚
space group P-1, a = 10.985(2) A, b = 23.721◦(5) A, c = 24.504(2) A,
◦
◦
3
˚
a = 60.95(3) , b = 89.70(3) , c = 77.84(3) , V = 5399.4(19) A ,
Z = 4, qcalcd = 1.026 g cm−3, l = 0.059 mm−1, F(000) 1826, index
ranges −9 ≤ h ≤ 12, −27 ≤ k ≤ 27, −28 ≤ l ≤ 28, 21527 reflections
measured (1.67 < h < 24.87◦), 15156 were independent (Rint = 0.0975),
observed reflections [I > 2r(I)] 4974, completeness to h = 24.87◦ 81.0%,
R1 = 0.1537 (for reflections with I > 2r(I)), R1 = 0.2883 (all data),
data/parameters 15156/1157, GOF = 1.187.
9 G. B. Nikiforov, H. W. Roesky, B. C. Heisen, C. Große and R. B.
Oswald, J Am. Chem. Soc., submitted for publishing.
10 G. B. Nikiforov, H. W. Roesky, J. Magull, T. Labahn, D. Vidovic, M.
Noltemeyer, H. G. Schmidt and N. S. Hosmane, Polyhedron, 2003, 22,
2669.
11 H. Zhu, J. Chai, C. He, G. Bai, H. W. Roesky, V. Jancik, H.-G. Schmidt
and M. Noltemeyer, Organometallics, 2005, 24, 380.
12 Complex 9 was deposited from the supernatant solution at room
temperature. Deposition started at r.t. after 15 d, volume of solution
20 ml or after 1 d, volume of solution 2 ml, or at 100 ◦C (1 d) and at
different ratios of the precursors (1 LTiMe3 : 1 equiv. LAlMe(OH) and
1 LTiMe3 : 2 equiv. LAlMe(OH)).
13 The supernatant hexane solution turned oily by concentration. No
deposition of solid was observed at 0 or −30 ◦C during 10 d from
the concentrated hexane solution. Complex 9b deposited from the
concentrated hexane solution over a period of 30 h at r.t.
14 B. Qian, D. L. Ward and M. R. Smith, III, Organometallics, 1998, 17,
3070.
32 P. B. Hitchcock, M. F. Lappert and D. S. Liu, J. Chem. Soc., Chem.
Commun., 1994, 2637.
˚
33 See distances in [LTiCl2(l-Cl)]2 (Ti–N 2.072, 1.986 A, L-benzamidinato
ligand CPh(NSiMe3)2) (a), L2Ti(NCMe3) (Ti–N 2.152(2) and
˚
2.156(3) A L-PhC(NSiMe3)2) (b), L2Ti(CH2SiMe3)2, Ti–N 2.006(2),
˚
˚
2.045(3) A, L2TiCl(CH2SiMe3) Ti–N 2.087(2), 2.091(2) A L-amino-
troponiminate ligand)(c); (a) D. Fenske, E. Hartmann and K. Dehnicke,
Z. Naturforsch., B: Chem. Sci., 1988, 43, 1611; (b) J. R. Hagadorn and
J. Arnold, Organometallics, 1998, 17, 1355; (c) D. P. Steinhuebel and
S. J. Lippard, Inorg. Chem., 1999, 38, 6225.
34 (a) S.-J. Kim, I. N. Jung, B. R. Yoo, S. Cho, J. Ko, S. H. Kim and S. O.
Kang, Organometallics, 2001, 20, 1501; (b) S.-J. Kim, D.-W. Choi, Y.-J.
Lee, B.-H. Chae, J. Ko and S. O. Kang, Organometallics, 2004, 23, 559.
35 (a) C. K. Ho, A. D. Schuler, C. B. Yoo, S. R. Herron, K. A. Kantardjieff
and A. R. Johnson, Inorg. Chim. Acta, 2002, 431, 71; (b) J. R. Petersen,
J. M. Hoover, W. S. Kassel, A. L. Rheingold and A. R. Johnson, Inorg.
Chim. Acta, 2005, 358, 687.
15 We have examined relative intensities of the c -H of L and Al-Me
resonances of the reaction mixture at different recycle delay D1: 1 s, 2, 4
and 6 s. The relative intensities were similar for D1: 2, 4 and 6 s, therefore
D1 2 s was chosen. In addition relative intensities of all resonances were
in agreement with the number of protons.
˚
36 The range of the Ti–C bond distances is 2.074(4)–2.201(7) A; see in ref.
33b and (a) S. Kleinhenz and K. Seppelt, Chem.–Eur. J., 1999, 5, 3573;
(b) K. H. Thiele, H. Windisch, H. Schumann and G. Kociok-Ko¨hn,
Z. Anorg. Allg. Chem., 1994, 620, 523; (c) H. Windisch, K. H. Thiele,
G. Kociok-Ko¨hn and H. Schumann, Z. Anorg. Allg. Chem., 1995, 621,
861.
16 All calculations were performed using OriginPro 7.5 SP5, OriginLab
Corporation,1991–2004.
17 Calculated second order constant using linear relationship 1/c(LTiMe3)
vs. time is similar to that using linear relationship for 1/c(LAlMe(OH))
vs. time first 1.5 h in agreement with the second order of reaction. Slope
of the line 1/c(LAlMe(OH)) vs. time is larger for the whole time period
(8 h), while slope of the line 1/c(LTiMe3) vs. time is nearly similar for the
reaction time period. The explanation is the following: the aluminium
hydroxide might potentially react with the alkyl metal compounds in
the system, including intermediate 7 and product LAlMe2 and complex
9, while LTiMe3 might react only with LAlMe(OH), hence the rate of
consumption of LAlMe(OH) could be higher than that of LTiMe3,
while at the beginning of the reaction LAlMe(OH) reacts preferentially
with LTiMe3, since relative concentration of the reaction products and
intermediates is low.
37 Compound {L2Ti(l-O)2}, L-Schiff base, Ti-(l-O) 1.837(3) and
˚
1.852(2) A:(a) M. L. N. Rao, H. Houjou and K. Hiratani, Chem. Com-
mun., 2002, 420; (b) Compound L2Ti(l-O)2TiL[g1-NC(Ph)N(SiMe3)2]
˚
(L = PhC(NSiMe3)2 Ti-(l-O) 1.790–1.883 A range, see ref. 33b.
38 (a) I. D. Brown, Structure and Bonding in Crystals, ed. M. O’Keefe,
A. Navrotsky, Academic Press, London, 1981; (b) I. D. Brown and D.
Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244; (c) Values used:
Ti(+4)–O(-2) Ro = 1.815, B = 0.37, Al(+3)–O(-2) Ro = 1.62, B = 0.37.
39 (a) J. L. Dodds, R. McWeeny and A. J. Sadlej, Mol. Phys., 1980, 41,
1419; (b) K. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc.,
1990, 112, 8251.
18 J. E. Kickham, F. Guerin and D. W. Stephan, J. Am. Chem. Soc., 2002,
40 P. H. M. Budzelaar, A. B. van Oort and A. G. Orpen, Eur. J. Inorg.
Chem., 1998, 1485.
41 (a) K. Zerche and K. H. Thiele, Z. Anorg. Allg. Chem., 1992, 612, 155;
(b) J. Giesemann, E. Ernst, A. Ernst and J. Ulbricht, Macromol. Chem.
Phys., 1986, 187, 1737; (c) J. Giesemann, A. Brandt and J. Ulbricht,
Acta Polym., 1983, 34, 623.
124, 11486.
19 The relationship E(Ti–O) = (38.493/r2) −7.904, where E is in eV and r
˚
in A is given in: Yu. Ya. Kharitonov and T. V. Gerzha, Zh. Fiz. Khim.,
1978, 52, 235.
20 (a) V. I. Telnoi, I. B. Rabinovich, V. D. Tikhanov, V. N. Latyaeva, L. I.
Vysginskaya and G. A. Razuvaev, Dokl. Akad. Nauk SSSR, 1967, 174,
1374.
42 J. C. W. Chien and J. T. T. Hsieh, J. Polym. Sci.: Polym. Chem. Ed.,
1976, 14, 1915.
21 M. F. Lappert, D. S. Patil and J. B. Pedley, J. Chem. Soc., Chem.
43 E. Krause, Ber. Dtsch. Chem. Ges., 1918, 51, 1447.
44 M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W.
Roesky and P. P. Power, J. Chem. Soc., Dalton Trans., 2001, 3465.
45 J. Storre, A. Klemp, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, R.
Fleischer and D. Stalke, J. Am. Chem. Soc., 1996, 118, 1380.
46 F. Basuli, B. C. Bailey, L. A. Watson, J. Tomaszewski, J. C. Huffman
and D. J. Mindiola, Organometallics, 2005, 24, 1886.
47 SAINT 6.02, 1997–1999, Bruker AXS, Inc., Madison, Wisconsin, USA.
48 G. Sheldrick, SADABS, 1999, Bruker AXS, Inc., Madison, Wisconsin,
USA.
Commun., 1975, 830.
22 J. E. Huheey, Inorganic Chemistry, Principles of Structure and Reactiv-
ity, Harper and Row Publishers, New York, 1978.
23 D. Chakravorty, Modern Aspects of Solid State Chemistry, Plenum
Press, New York, 1980, 391.
24 E. R. Fisher, J. L. Elkind, D. E. Clemmer, R. Georgiadis, S. K. Loh, N.
Aristov, L. S. Sunderlin and P. B. Armentrout, J. Chem. Phys., 1990,
93, 2676.
25 J. A. M. Simoes and J. L. Beauchamp, Chem. Rev., 1990, 90, 629.
4158 | Dalton Trans., 2007, 4149–4159
This journal is
The Royal Society of Chemistry 2007
©