4150 J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 17
Letters
(7) Huang, Y.; Park, Y. C.; Rich, R. L.; Segal, D.; Myszka, D. G.;
Wu, H. Structural basis of caspase inhibition by XIAP: dif-
ferential roles of the linker versus the BIR domain. Cell 2001,
104, 781-790.
(8) Ekert, P. G.; Silke, J .; Hawkins, C. J .; Verhagen, A. M.; Vaux,
D. L. DIABLO promotes apoptosis by removing MIHA/XIAP
from processed caspase 9. J . Cell Biol. 2001, 152, 483-490.
(9) Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.;
Chai, J .; Lee, R. A.; Robbins, P. D.; Fernandes-Alnemri, T.; Shi,
Smac mimetics. The most potent Smac mimetic 12d
obtained from this study is as potent as the natural
Smac peptide binding to the XIAP BIR3 protein. Fur-
thermore, 12d contains only one unnatural amino acid
and no natural amino acid and thus has much reduced
peptide characteristics in its chemical structure. As
expected from its much reduced peptide nature, 12d is
as effective as the Smac peptide tethered to a carrier
peptide17 in enhancing apoptosis induced by cisplatin
in PC-3 prostate cancer cells, while the natural Smac
peptide without a carrier peptide is ineffective. Thus,
12d may be used as a powerful chemical and pharma-
cological tool to elucidate the roles of Smac and IAP
proteins in regulation of apoptosis in cells. Further
optimization of 12d may ultimately lead to the develop-
ment of an entirely new class of anticancer drugs that
specifically target IAP proteins and overcome apoptosis
resistance of cancer cells to current chemotherapeutic
agents.
Y.; Alnemri, E. S.
A conserved XIAP-interaction motif in
caspase-9 and Smac/DIABLO regulates caspase activity and
apoptosis. Nature 2001, 410, 112-116.
(10) Shiozaki, E. N.; Chai, J .; Rigotti, D. J .; Riedl, S. J .; Li, P.;
Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y. Mech-
anism of XIAP-mediated inhibition of caspase-9. Mol. Cell 2003,
11, 519-527.
(11) Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a mitochondrial
protein that promotes cytochrome c-dependent caspase activa-
tion by eliminating IAP inhibition. Cell 2000, 102, 33-42.
(12) Verhagen, A. M.; Ekert, P. G.; Pakusch, M.; Silke, J .; Connolly,
L. M.; Reid, G. E.; Moritz, R. L.; Simpson, R. J .; Vaux, D. L.
Identification of DIABLO, a mammalian protein that promotes
apoptosis by binding to and antagonizing IAP proteins. Cell
2000, 102, 43-53.
(13) Wu, G.; Chai, J .; Suber, T. L.; Wu, J . W.; Du, C.; Wang, X.; Shi,
Y. Structural basis of IAP recognition by Smac/DIABLO. Nature
2000, 408, 1008-1012.
(14) Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R.; Betz, S. F.; Oost,
T.; Herrmann, J .; Wu, J . C.; Fesik, S. W. Structural basis for
binding of Smac/DIABLO to the XIAP BIR3 domain. Nature
2000, 408, 1004-1008.
Ack n ow led gm en t. We are grateful for the partial
financial support from the Prostate Cancer Research
Foundation.
(15) Kipp, R. A.; Case, M. A.; Wist, A. D.; Cresson, C. M.; Carrell,
M.; Griner, E.; Wiita, A.; Albiniak, P. A.; Chai, J .; Shi, Y.;
Semmelhack, M. F.; McLendon, G. L. Molecular targeting of
inhibitors of apoptosis proteins based on small molecule mimics
of natural binding partners. Biochemistry 2002, 41, 7344-7349.
(16) Fulda, S.; Wick, W.; Weller, M.; Debatin, K.-M. Smac agonists
sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis
and induce regression of malignant glioma in vivo. Nat. Med.
2002, 8, 808-815.
(17) Arnt, C. R.; Chiorean, M. V.; Heldebrant, M. P.; Gores, G. J .;
Kaufmann, S. H. Synthetic Smac/DIABLO Peptides Enhance the
Effects of Chemotherapeutic Agents by Binding XIAP and cIAP1
in Situ. J . Biol. Chem. 2002, 277, 44236-44243.
(18) Yang, L.; Mashima, T.; Sato, S.; Mochizuki, M.; Sakamoto, H.;
Yamori, T.; Oh-Hara, T.; Tsuruo, T. Predominant suppression
of apoptosome by inhibitor of apoptosis protein in non-small cell
lung cancer H460 cells: therapeutic effect of a novel polyargi-
nine-conjugated Smac peptide. Cancer Res. 2003, 63, 831-837.
(19) Lombart, H.-G.; Lubell, W. D. Rigid Dipeptide Mimetics: Ef-
ficient Synthesis of Enantiopure Indolizidinone Amino Acids. J .
Org. Chem. 1996, 61, 9437.
Su p p or tin g In for m a tion Ava ila ble: Information on the
synthesis of compounds in Table 1, the detailed conditions and
experimental procedure for FP based binding assay, the NMR
HSQC experiments with and without 12d , and detailed
cellular assays as indicated in Figure 2. This material is
Refer en ces
(1) Kerr, J . F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic
biological phenomenon with wide-ranging implications in tissue
kinetics. Br. J . Cancer 1972, 26, 239-257.
(2) Thompson, C. B. Apoptosis in the pathogenesis and treatment
of disease. Science 1995, 267, 1456-1462.
(3) Nicholson, D. W. From bench to clinic with apoptosis-based
therapeutic agents. Nature 2000, 407, 810-816.
(4) Reed, J . C. Apoptosis-based therapies. Nat. Rev. Drug Discovery
2002, 1, 111-121.
(5) Deveraux, Q. L.; Reed, J . C. IAP family proteinsssuppressors
of apoptosis. Genes Dev. 1999, 1, 239-252.
(6) Salvesen, G. S.; Duckett, C. S. IAP proteins: blocking the road
to death’s door. Nat. Rev. Mol. Cell Biol. 2002, 3, 401-410.
J M0499108