Angewandte
Chemie
Table 1: Selected analytical data for compounds 18, 20, and 21.
18: [a]2D0 =ꢀ4.50 (c=1.36, MeOH); IR (film): n˜max =3424, 3338, 2978,
2938, 1693, 1658, 1616, 1542, 1392, 1367, 1253, 1140, 1007, 839 cmꢀ1
1H NMR (400 MHz, CDCl3): d=7.29 (dd, J=15.2, 11.2 Hz, 1H), 6.51
;
(dd, J=14.8, 10.8 Hz, 1H), 6.30–6.15 (m, 2H and NH), 5.87 (m, 1H),
5.87 (d, J=15.2 Hz, 1H), 4.09 (m, 1H), 3.75 (s, 3H), 3.64 (brs, 1H),
3.37 (m, 2H), 3.11 (t, J=9.9 Hz, 1H), 2.37 (m, 3H), 1.56 (brs, 3H), 1.51
(brs, 3H), 1.47 (s, 9H), 1.14 ppm (brs, 3H); 13C NMR (75 MHz, CDCl3):
d=173.2 (s), 167.5 (s), 152.2 and 151.8 (s), 144.6 (d), 140.4 (d), 136.1
(d), 131.9 (d), 128.8 (d), 120.4 (d), 94.0 and 93.5 (s), 80.4 and 79.8 (s),
75.0 (d), 51.5 (q), 49.6 and 49.5 (t), 44.2 and 44.0 (d), 38.5 (t), 33.1 (t),
28.3 (3q), 27.3, 26.2, 25.2, and 24.4 (2q), 13.4 ppm (q); HRMS (CI+,
NH3): calcd for C23H37O6N2 [M+H+]: 437.2652; found: 437.2643.
20: [a]2D0 =+6.93 (c=0.88, CHCl3); IR (film): n˜max =3293, 2930, 1711,
1639, 1616, 1541, 1433, 1263, 1233, 1136, 1004, 732, 618 cmꢀ1; 1H NMR
(400 MHz, CDCl3): d=7.28 (dd, J=15.3, 11.3 Hz, 1H), 6.78 (brm, NH,
1H), 6.57 (brm, NH, 1H), 6.52 (dd, J=14.9, 10.8 Hz, 1H), 6.31 (brt,
J=7.5 Hz, 1H), 6.25 (dd, J=14.9, 11.3 Hz, 1H), 6.20 (dd, J=15.4,
10.8 Hz, 1H), 5.87 (d, J=15.3 Hz, 1H), 5.87 (m, 1H), 4.61 (m, 1H), 3.74
(s, 3H), 3.66 (brm, OH, 1H), 3.51 (ddd, J=11.5, 6.6, 4.2 Hz, 1H), 3.34
(m, 2H), 3.12 (ddd, J=11.5, 7.5, 4.9 Hz, 1H), 2.97 (d, J=7.5 Hz, 2H),
2.40 (s, 3H), 2.40–2.31 (m, 3H), 1.24 ppm (d, J=7.0 Hz, 3H); 13CNMR
(75 MHz, CDCl3): d=175.8 (s), 170.2 (s), 167.5 (s), 144.7 (d) 140.4 (d),
135.7 (d), 132.8 (d), 132.1 (d), 128.9 (d), 120.3 (d), 97.8 (s), 73.2 (d),
51.6 (q), 44.4 (t), 43.2 (d), 38.5 (t), 37.7 (t), 33.0 (t), 27.9 (q), 15.7 ppm
(q); HRMS (CI+, NH3): calcd for C20H30O5N2I [M+H+]: 505.1199; found:
505.1195.
21: [a]2D0 =+7.37 (c=0.38, CHCl3); IR (film): n˜max =3308, 2956, 2927,
2856, 1720, 1646, 1619, 1546, 1459, 1435, 1271, 1137, 1074, 1007,
739 cmꢀ1; 1H NMR (400 MHz, CDCl3): d=7.22 (dd, J=15.2, 11.2 Hz,
1H), 6.45 (dd, J=14.7, 10.7 Hz, 1H), 6.29 (m, NH, 1H), 6.20 (d,
J=15.7 Hz, 1H), 6.20–6.04 (m, 2H and NH), 5.81 (m, 1H), 5.80 (d,
J=15.2 Hz, 1H), 5.62 (dd, J=15.6, 6.8 Hz, 1H), 5.53 (t, J=7.6 Hz, 1H),
4.33 (d, J=5.9 Hz, OH, 1H), 4.09 (m, 1H), 3.68 (s, 3H), 3.55 (brm,
1H), 3.45 (m, 1H), 3.29 (m, 2H), 3.03 (m, 3H), 2.31 (q, J=6.8 Hz, 2H),
2.22 (m, 1H), 1.70 (s, 3H), 1.55–1.40 (m, 2H), 1.30–1.15 (m, 10H and
OH), 1.18 (d, J=7.6 Hz, 3H), 0.81 ppm (t, J=6.7 Hz, 3H); 3CNMR
(75 MHz, CDCl3): d=175.6 (s), 172.0 (s), 167.6 (s), 144.7 (d), 140.4 (d),
137.6 (s), 135.7 (d), 133.9 (d), 132.2 (d), 132.0 (d), 128.9 (d), 123.2 (d),
120.4 (d), 73.5 (d), 72.9 (d), 51.6 (q), 44.4 (t), 43.2 (d), 38.5 (t), 37.5 (t),
36.2 (t), 33.0 (t), 31.8 (t), 29.6 (t), 29.3 (t), 25.5 (t), 22.7 (t), 15.7 (q), 14.1
(q), 12.8 ppm (q); HRMS (CI+, NH3): calcd for C30H49O6N2 [M+H+]:
533.3591; found: 533.3597.
Scheme 7. Completion of the total synthesis of pseudotrienic acid B.
Reagents and conditions: a) 5 (1.2 equiv), HOBT (1.2 equiv), HBTU
(1.2 equiv), NMM (3.0 equiv), CH3CN, 08C!RT, 6 h, 96%; b) pTsOH
(0.5 equiv), MeOH, 4 h, RT, 82%; c) TFA/CH2Cl2 (1:5), 08C!RT,
45 min; d) 13 (1.1 equiv), HOBT (1.1 equiv), HBTU (1.1 equiv), NMM
(3.0 equiv), CH3CN, 08C!RT, 12 h, 78% (2 steps); e) 17 (1.5 equiv),
[PdCl2(MeCN)2] (0.05 equiv), DMF degassed with Ar, RT, 12 h, 51%;
f) LiOH (30 equiv), MeOH/THF/H2O (2:2:1), RT, 12 h, 75%.
HOBT=N-hydroxybenzotriazole, HBTU=O-(1H-benzotriazol-1-yl)-
N,N,N’,N’-tetramethyluronium hexafluorophosphate, NMM=N-meth-
ylmorpholine, DMF=N,N-dimethylformamide, TFA=trifluoroacetic
acid.
The synthesis of pseudotrienic acid B was completed by
performing a [PdCl2(MeCN)2]-catalyzed Stille cross-coupling
reaction in DMF[17] between vinyl iodide 20 and vinyl
stannane 17 with a nonprotected allylic alcohol, thus produc-
ing the core structure of pseudotrienic acid B in 51% yield as
a mixture of two diastereoisomers, epimeric at C20 (com-
pound 21) (Table 1). It is noteworthy that only one set of
NMR signals is observed, a fact suggesting that these two
diastereoisomers cannot be distinguished by NMR spectros-
copy since they give an identical spectrum. Finally, a simple
saponification of the methyl ester 21 with LiOH afforded the
expected pseudotrienic acid B in 75% yield.[18] The spectro-
scopic data for synthetic pseudotrienic acid B were in agree-
ment with those reported in the literature for the natural
product.[1]
to control the stereogenic centers at C11 and C20, a cross-
metathesis reaction to synthesize the triene moiety, and a
palladium-catalyzed Stille cross-coupling reaction to com-
plete the assembly of the carbon framework of pseudotrienic
acid B. This rapid and flexible synthetic approach will allow
access to a wide variety of analogues for biological evaluation.
The possibility of assigning the configuration at C16 in
FR252921 by the stereoselective synthesis of each of the two
epimers of pseudotrienic acid B is currently under investiga-
tion.
Received: March 21, 2006
Revised: May 10, 2006
Published online: July 31, 2006
In conclusion, a concise, efficient, and highly convergent
stereoselective synthesis of the bioactive natural product
pseudotrienic acid B has been achieved, with a longest linear
sequence of 10 steps from methyl sorbate (1) (5.8% overall
yield). Synthetic highlights include a crotyltitanation reaction
Keywords: cross-coupling · crotyltitanation · metathesis ·
.
natural products · total synthesis
Angew. Chem. Int. Ed. 2006, 45, 5870 –5874ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5873